Traffic Terms"and Concepts

Why do we need to concern ourselves with traffic when we design pavements? Traffic is what LOADS the pavement

- Repeated, cyclic loads on a structure eventually result in structural fatigue

We see the result of this fatigue as pavement damage or distress.

Concept of load equilivalency ansl standard unit load/configuracion used in pavement design technology.

- Heavy vehicles cause damage to pavements
- The heavier the load per axle, the more damage
- In order to assess the damage caused by the many different types/configurations of vehicles, one specific load/configuration has been adopted as the standard

- The standard adopted is the $18,000 \mathrm{lb}$ single axle load, a truck with a single rear axle
- The rear wheels each transmit 9000 bloads to

9000 lb
$18,000 \mathrm{lb}=80 \mathrm{kN}$

- A load equivalency factor gives thene nusniber of repetitions of the standard load/configuraition that would cause an equivalent amount of clamage as one pass of the specific venicle;
e.g., a load equivalency factor of 2.5 rneans thaic...

one pass of a specific vehicle

causes an equivalent amount of damage as two and a half passes of the standard vehicle
a) ESAL
b) ITN
c) DTN
a) the standard load and axle configuration to which all other load and axle configurations are converted when evaluating traffic loads for pavement structural design

ESAL = Equivalent Single Axle Load

ITN (Initial Traffic Number)

- the average number of ESAL's/day in the first year of a pavement design analysis period

DTN (Design Traffic Number)
 \section*{}

- the average number of ESALL's/day over the entire pavement design analysis period
- The total ESAL applications over the design analysis period divided by the number of traffic
days
egg, 6,000,000 ESAL's over 20 years $=300,000$
ESAL's per year or 1,000 ESAL's per day for 300
e.g, $6,000,000$ ESAL's over 20 years $=300,000$
ESAL's per year or 1,000 ESAL's per day for 300 truck days per year ($(\mathrm{i}, \mathrm{e}, \mathrm{DTN}=1000$) slay over the
 $+\frac{2}{2}+e^{2}$

 's/clay in the first

-

[^0][^1]
_

 E

E

-

Load distribution through the pavement structure

Typical assumptions:

- Multilayered elastic system
- Subbase, base course, AC surface is infinite in the horizontal direction
- Subgrade is infinite in the vertical and horizontal direction
- Contain both the horizontal and vertical strains below the set values that will cause excessive cracking
- These criteria are considered in terms of repeated load applications because the accumulated repetitions of traffic loads are of significant importance to the development of cracks and permanent deformation of the
 pavement.

Estimating accumulated wheel load repetitions

Traffic Characteristics: The traffic characteristics are determined in terms of the number of repetitions of an 18,000-lb (80 kilo-newtons (kN)) single-axle load applied to the pavement on two sets of dual tires.

Equivalent single-axle load (ESAL)

- Tire contact area (each 4.51 in . (11 cm) radius) and $13.57(33 \mathrm{~cm})$ in apart

Contact pressure of 70 $\mathrm{lb} / \mathrm{in}^{2}$

Premise: "the effect of any load on the performance of a pavement can be represented in terms of the number of single applications of an 18,000-lb single axle.

4 tires x $\pi \times 4.51^{2}=255.601 \mathrm{in}^{2}$, Total single-axle load $=255.601 \times 70$ $\mathrm{lb} / \mathrm{in}^{2}=17,892$ approximately $18,000 \mathrm{lbs}$.

Load equivalency factors (Table 20.3): Use this if you know axle loads

Gross Axle Load
Load Equivalency Factors
Single Axles Tandem Axles Tridem Axles

4.45	1,000	0.00002		
8.9	2,000	0.00018		
17.8	4,000	0.00209	0.0003	0.0003
26.7	6,000	0.01043	0.001	0.001
35.6	8,000	0.0343	0.003	0.002
44.5	10,000	0.0877	0.007	0.003
53.4	12,000	0.189	0.014	0.006
62.3	14,000	0.360	0.027	0.011
71.2	16,000	0.623	0.047	0.017
8.0	18,000	1.000	0.077	0.027
89.0	20,000	1.51	0.121	

Obviously the traffic mix (cars, buses, SU trucks, semis, etc.) must be known because their gross axle loads are different. \rightarrow Vehicle classification counts are needed. Also needed is axle load data - the reason for having truck weighing stations on major highways.

How to estimate the traffic mix if field data are not available (In this case axle loads data must be available).

Table 20.4 can help you estimate break-down of truck types in percentages.

Rural Systems

Truck Class		Other	Minor		tors	
	Interstate	Principal	Arterial	Major	Minor	Range
Single-unit trucks						
2-axle, 4-tire	43 \%	60	71	73	80	43-80
2-axle, 6-tire	8	10	11	10	10	8-11
3-axle or more	2	3	4	4	2	$2-4$
All single-units	53	73	86	87	92	53-92
Multiple-unit trucks						
4-axle or less	5	3	3	2	2	2-5
5-axle**	41	23	11	10	6	6-41
$\begin{aligned} & \text { 6-axle or } \\ & \text { more }{ }^{\star \star} \end{aligned}$	1	1	<1	1	<1	$<1-1$
All multiple units	47	27	14	13	8	8-47
All trucks	100%	100	100	100	100	

How to estimate ESAL if axle loads are not known

The equivalent $18,000-\mathrm{lb}$ loads can also be determined from the vehicle type, if the axle load is unknown, by using a truck factor for that vehicle type. The truck factor is defined as the number of $18,000-\mathrm{lb}$ single-load applications caused by a single passage of a vehicle.

Table 20.5 gives truck factors, that is, they were computed based on previous research data. Remember this formula as the definition of the truck factor. You may not actually compute it unless you are determining typical truck factors for your study area. Problem 20-4 let you use this formula.

Distribution of truck factors for different classes of highways and vehicles

Rural Systems

Vehicle	Other	Minor	Collectors	
Type	Interstate Principal	Arterial	Major	Minor

Single-unit trucks						
2-axle, 4-tire	0.003	0.003	0.003	0.017	0.003	0.003-0.017
2-axle, 6-tire	0.21	0.25	0.28	0.41	0.19	0.19-0.41
3-axle or more	0.61	0.86	1.06	1.26	0.45	0.45-1.26
All single-units	0.06	0.08	0.08	0.12	0.03	0.03-0.12
Tractor-semitrailers						
4 -axle or less	0.62	0.92	0.62	0.37	0.91	0.37-0.91
5-axle ${ }^{\text {® }}$	1.09	1.25	1.05	1.67	1.11	1.05-1.67
6 -axle or more ${ }^{\star \star}$	1.23	1.54	1.04	2.21	1.35	1.04-2.21
All multiple units	1.04	1.21	0.97	1.52	1.08	0.97-1.52
All trucks	0.52	0.38	0.21	0.30	0.12	0.12-0.52

Example: For rural interstates, one single truck is considered to have 0.52 ESAL. Count the total number of trucks and multiply it by 0.52 to find total ESAL for that section.

Determining the accumulated ESAL

Must know: Design period, traffic growth rate, and design lane factor. Usually a 20 -year design period is used. Traffic growth rates can be obtained from the planning division of the State DOT.

Table 20.6
 Growth Factors

Determining accumulated ESAL when axle loads are used

$E S A L_{i}=f_{d} \times G_{j t} \times A A D T_{i} \times 365 \times N_{i} \times F_{E i}$

* $\mathrm{ESAL}_{\mathrm{i}}=$ equivalent accumulated $18,000-\mathrm{lb}(80 \mathrm{kN})$ single-axle load for the axle category i
* $\mathrm{f}_{\mathrm{d}}=$ design lane factor
* $\mathrm{G}_{\mathrm{jt}}=$ growth factor for a given growth rate j and design period t
* $\mathrm{AADT}_{\mathrm{i}}=$ first year annual average daily traffic for axle category i
* $\mathrm{N}_{\mathrm{i}}=$ number of axles on each vehicle in axle category i
* $\mathrm{F}_{\mathrm{Ei}}=$ load equivalency factor for axle category i

Note that AADT used here is the total for both directions.

Determining accumulated ESAL when truck factors are used

$$
E S A L_{i}=f_{d} \times G_{j t} \times A A D T_{i} \times 365 \times f_{i}
$$

The accumulated ESAL for all categories of axle loads is:

$$
E S A L=\sum_{i=1}^{n}\left[E S A L_{i}\right]
$$

* $\mathrm{ESAL}_{\mathrm{i}}=$ equivalent accumulated $18,000-\mathrm{lb}$ axle load for truck category i
* $\mathrm{f}_{\mathrm{d}}=$ design lane factor
* $\mathrm{G}_{\mathrm{jt}}=$ growth factor for a given growth rate j and design period t
* $\mathrm{AADT}_{\mathrm{i}}=$ first year annual average daily traffic for truck category i
* $\mathrm{f}_{\mathrm{i}}=$ truck factor for vehicles in truck category i
* ESAL = equivalent accumulated $18,000-\mathrm{lb}$ axle loads for all vehicles
* $\mathrm{n}=$ number of truck categories

$\text { Table } 20.3$		Equivalent axle load factor			Axle load (lb)	Equivalent axle load factor		
	load (lb)	Single axles	Tandem axles	Tridem axles		Single axles	Tandem axles	Tridem axles
	1000	0.00002			41,000	23.27	2.29	0.540
	2000	0.00018			42,000	25.64	2.51	0.597
	3000	0.00072			43,000	28.22	2.76	0.658
	4000	0.00209			44,000	31.00	3.00	0.723
	5000	0.00500			45,000	34.00	3.27	0.793
	6000	0.01043			46,000	37.24	3.55	0.868
	7000	0.0196			47,000	40.74	3.85	0.948
	8000	0.0343			48,000	44.50	4.17	1.033
	9000	0.0562			49,000	48.54	4.51	1.12
	10,000	0.0877	0.00688	0.002	50,000	52.88	4.86	1.22
	11,000	0.1311	0.01008	0.002	51,000		5.23	1.32
	12,000	0.189	0.0144	0.003	52,000		5.63	1.43
	13,000	0.264	0.0199	0.005	53,000		6.04	1.54
	14,000	0.360	0.0270	0.006	54,000		6.47	1.66
	15,000	0.478	0.0360	0.008	55,000		6.93	1.78
	$16,000$	0.623	0.0472	0.011	56,000		7.41	1.91
	$17,000$	0.796	0.0608	0.014	57,000		7.92	2.05
	18,000	1.000	0.0773	0.017	58,000		8.45	2.20
	19,000	1.24	0.0971	0.022	59,000		9.01	2.35
	20,000	1.51	0.1206	0.027	60,000		9.59	2.51
	21,000	1.83	0.148	0.033	61,000		10.20	2.67
	22,000	2.18	0.180	0.040	62,000		10.84	2.85
	23,000	2.58	0.217	0.048	63,000		11.52	3.03
	24,000	3.03	0.260	0.057	64,000		12.22	3.22
	25,000	3.53	0.308	0.067	65,000		12.96	3.41
	$26,000$	4.09	0.364	0.080	66,000		13.73	3.62
	$27,000$	4.71	0.426	0.093	67,000		14.54	3.83
	28,000	5.39	0.495	0.109	68,000		15.38	4.05
	29,000	6.14	0.572	0.126	69,000		16.26	4.28
	30,000	6.97	0.658	0.145	70,000		17.19	4.52
	31,000	7.88	0.753	0.167	71,000		18.15	4.77
	32,000	8.88	0.857	0.191	72,000		19.16	5.03
	33,000	9.98	0.971	0.217	73,000		20.22	5.29
	34,000	11.18	1.095	0.246	74,000		21.32	5.57
	35,000	12.50	1.23	0.278	75,000		22.47	5.86
	$36,000$	13.93	1.38	0.313	76,000		23.66	6.15
	37,000	15.50	1.53	0.352	77,000		24.91	6.46
	38,000	17.20	1.70	0.393	78,000		26.22	6.78
	39,000	19.06	1.89	0.438	79,000		27.58	7.11
	40,000	21.08	2.08	0.487	80,000		28.99	7.45

Note. $1 \mathrm{lb}=4.45 \mathrm{~N}$.

Table 20.6	Design period (years)	Annual growth rate (\%)							
		No growth	2	4	5	6	7	8	10
	1	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	2	2.0	2.02	2.04	2.05	2.06	2.07	2.08	2.10
	3	3.0	3.06	3.12	3.15	3.18	3.21	3.25	3.31
	4	4.0	4.12	4.25	4.31	4.37	4.44	4.51	4.64
	5	5.0	5.20	5.42	5.53	5.64	5.75	5.87	6.11
	6	6.0	6.31	6.63	6.80	6.98	7.15	7.34	7.72
	7	7.0	7.43	7.90	8.14	8.39	8.65	8.92	9.49
	8	8.0	8.58	9.21	9.55	9.90	10.26	10.64	11.44
	9	9.0	9.75	10.58	11.03	11.49	11.98	12.49	13.58
	10	10.0	10.95	12.01	12.58	13.18	13.82	14.49	15.94
	11	11.0	12.17	13.49	14.21	14.97	15.78	16.65	18.53
	12	12.0	13.41	15.03	15.92	16.87	17.89	18.98	21.38
	13	13.0	14.68	16.63	17.71	18.88	20.14	21.50	24.52
	14	14.0	15.97	18.29	19.16	21.01	22.55	24.21	27.97
	15	15.0	17.29	20.02	21.58	23.28	25.13	27.15	31.77
	16	16.0	18.64	21.82	23.66	25.67	27.89	30.32	35.95
	17	17.0	20.01	23.70	25.84	28.21	30.84	33.75	40.55
	18	18.0	21.41	25.65	28.13	30.91	34.00	37.45	45.60
	19	19.0	22.84	27.67	30.54	33.76	37.38	41.45	51.16
	20	20.0	24.30	29.78	33.06	36.79	41.00	45.76	57.28
	25	25.0	32.03	41.65	47.73	54.86	63.25	73.11	98.35
	30	30.0	40.57	56.08	66.44	79.06	94.46	113.28	164.49
	35	35.0	49.99	73.65	90.32	111.43	138.24	172.32	271.02

[^0]: "

[^1]: -

