JANBU & BJERRUM'S METHOD FOR ELASTIC SETTLEMENT UNDER UNDRAINED CONDITIONS

Based on elastic theory, the immediate/elastic settlement of flexible surface footing may be written as

$$\Delta i = qB \frac{(1-u^2)}{Es} I_f$$

For u=0.5, Janbu & Bjerrum the modify the above equation and adding $I_1 \& I_2$ for I_f

$$\Delta i = \frac{q_n B}{Es} I_1 I_2$$

- Δ_i = Elastic or immediate settlement
- q_n = Net footing pressure
- B = Width of footing
- $E_s = Elastic modulus of soil$
- I_1 , I_2 = Influence factors (from figures)

For clays
$$E = 300$$
 to 500 S_u

Factors I₁ & I₂ for Janbu's Method

Settlement by Schmertmann's Method

Schmertmaan (1970, 1978) developed settlement method for spread footings on granular soils The method is very useful when

•CPT data along the depth of subsoil is available for evaluation of E_s of subsoil.

•Can be used with reasonable accuracy for other in-situ test data like SPT or others to give E_s

$$s = C_1 C_2 q' \sum \frac{I_z}{E_s} \Delta z$$

 $C_1 = \text{Embedment factor or depth factor} = 1 - 0.5 \frac{\sigma_o'}{q'}$

$$C_2$$
 = Time or Creep factor = 1 + 0.2 log ($t/0.1$)

q' = Net contact pressure at footing base

 $\sigma_o = {
m Effective}$ overburden pressure at footing depth

 I_z = Strain influence factor at depth z below the footing base

E_s = Modulus of elasticity of soil

$$\begin{split} &\mathsf{E}_{s} = 2.5 \sim 3.5 \; \mathsf{q}_{c} \\ &\mathsf{E}_{s} = 2.5 \mathsf{q}_{c} \; (\text{for axis symmetrical case, i.e., for square or circular footing} \\ &\mathsf{E}_{s} = 3.5 \mathsf{q}_{c} \; (\text{for plane strain case, i.e., for strip footing, L/B>10}) \\ &\mathsf{E}_{s} = 250 \sim 500 \; \mathsf{S}_{u} \; ; \; \text{for NCC, generally } \mathsf{E}_{s} = 300 \; \mathsf{S}_{u} \end{split}$$

Strain Influence Factor, I_z

Df

$$I_{z peak} = 0.5 + 0.1 \left(\frac{q'}{\Delta \sigma_{vp}}\right)^{1/2}$$

 σ_{vp} = effective overburden pressure at a depth of 0.5*B* (for square footing) and at depth B for strip footing **Example:** The figure shows the results of CPT sounding at a site. The subsoil at the site consists of young NC sand with some inter-bedded silts. The GWT is at 2 m below the surface. A strip footing (2.5 mx30 m) is to be founded at 2 m depth below the surface and will be loaded with gross bearing pressure of 197 kPa. Compute the settlement of the footing. (i) soon after construction (ii) after 5 years (iii) after 50 years of construction.

Use $\gamma = 17$ kN/m³ above W/T and $\gamma = 20$ kN/m³ below W/T

Timoshinko & Goodier's Method

$$\Delta_H = q_o B' \frac{1 - \mu^2}{E_s} I_i$$

(General Equation based on theory of elasticity)

Timoshinko & Goodier (1951) modify the above equation as below:

$$\Delta_H = q_o B' \frac{1 - \mu^2}{E_s} m I_s I_F$$

q = contact pressure

B' = least lateral footing dimension of contributing base area m = number of corners contributing to settlement, for corner m = 1, for centre m = 4 $E_s \& u = elastic soil parameters$

$$I_{s} = I_{1} + \frac{1 - 2\mu}{1 - \mu}I_{2}$$

For $I_{1} \& I_{2}$ see table
I_{r}=Depth factor. see figure

Depth Factor, I_F

TABLE 5-2

Values of I_1 and I_2 to compute the Steinbrenner influence factor I_s for use in Eq. (5-16a) for several N = H/B' and M = L/B ratios

N	M = 1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0
0.2	$I_1 = 0.009$	0.008	0.008	0.008	0.008	0.008	0.007	0.007	0.007	0.007	0.007
	$I_2 = 0.041$	0.042	0.042	0.042	0.042	0.042	0.043	0.043	0.043	0.043	0.043
0.4	0.033	0.032	0.031	0.030	0.029	0.028	0.028	0.027	0.027	0.027	0.027
	0.066	0.068	0.069	0.070	0.070	0.071	0.071	0.072	0.072	0.073	0.073
0.6	0.066	0.064	0.063	0.061	0.060	0.059	0.058	0.057	0.056	0.056	0.055
	0.079	0.081	0.083	0.085	0.087	0.088	0.089	0.090	0.091	0.091	0.092
0.8	0.104	0.102	0.100	0.098	0.096	0.095	0.093	0.092	0.091	0.090	0.089
	0.083	0.087	0.090	0.093	0.095	0.097	0.098	0.100	0.101	0.102	0.103
1.0	0.142	0.140	0.138	0.136	0.134	0.132	0.130	0.129	0.127	0.126	0.125
	0.083	0.088	0.091	0.095	0.098	0.100	0.102	0.104	0.106	0.108	0.109
1.5	0.224	0.224	0.224	0.223	0.222	0.220	0.219	0.217	0.216	0.214	0.213
	0.075	0.080	0.084	0.089	0.093	0.096	0.099	0.102	0.105	0.108	0.110
2.0	0.285	0.288	0.290	0.292	0.292	0.292	0.292	0.292	0.291	0.290	0.289
	0.064	0.069	0.074	0.078	0.083	0.086	0.090	0.094	0.097	0.100	0.102
3.0	0.363	0.372	0.379	0.384	0.389	0.393	0.396	0.398	0.400	0.401	0.402
	0.048	0.052	0.056	0.060	0.064	0.068	0.071	0.075	0.078	0.081	0.084

	M = 1.	0 1.	1 1.2	2 1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0
4.0	0.408	0.421	0.431	0.440	0.448	0.455	0.460	0.465	0.469	0.473	0.476
	0.037	0.041	0.044	0.048	0.051	0.054	0.057	0.060	0.063	0.066	0.069
5.0	0.437	0.452	0.465	0.477	0.487	0.496	0.503	0.510	0.516	0.522	0.526
	0.031	0.034	0.036	0.039	0.042	0.045	0.048	0.050	0.053	0.055	0.058
6.0	0.457	0.474	0.489	0.502	0.514	0.524	0.534	0.542	0.550	0.557	0.563
	0.026	0.028	0.031	0.033	0.036	0.038	0.040	0.043	0.045	0.047	0.050
7.0	0.471	0.490	0.506	0.520	0.533	0.545	0.556	0.566	0.575	0.583	0.590
	0.022	0.024	0.027	0.029	0.031	0.033	0.035	0.037	0.039	0.041	0.043
8.0	0.482	0.502	0.519	0.534	0.549	0.561	0.573	0.584	0.594	0.602	0.611
	0.020	0.022	0.023	0.025	0.027	0.029	0.031	0.033	0.035	0.036	0.038
9.0	0.491	0.511	0.529	0.545	0.560	0.574	0.587	0.598	0.609	0.618	0.627
	0.017	0.019	0.021	0.023	0.024	0.026	0.028	0.029	0.031	0.033	0.034
10.0	0.498	0.519	0.537	0.554	0.570	0.584	0.597	0.610	0.621	0.631	0.641
	0.016	0.017	0.019	0.020	0.022	0.023	0.025	0.027	0.028	0.030	0.031
20.0	0.529	0.553	0.575	0.595	0.614	0.631	0.647	0.662	0.677	0.690	0.702
	0.008	0.009	0.010	0.010	0.011	0.012	0.013	0.013	0.014	0.015	0.016
0.0	0.560	0.587	0.612	0.635	0.656	0.677	0.696	0.714	0.731	0.748	0.763
	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.001

Example: A raft 33.5 m x 39.5 m in plan is founded at 3 m depth, the contact pressure on the mat and the soil profile is shown in the figure below. Estimate elastic settlement by Timoshinko and Goodier 's method.

TABLE 5-6 Equations for stress-strain modulus E_s by several test methods

 E_s in kPa for SPT and units of q_c for CPT; divide kPa by 50 to obtain ksf. The N values should be estimated as N_{55} and not N_{70} . Refer also to Tables 2-7 and 2-8.

Soil	SPT	СРТ
Sand (normally	$E_s = 500(N+15)$	$E_s = (2 \text{ to } 4)q_u$
consolidated)	$= 7000 \sqrt{N}$	$= 8000 \sqrt{q_c}$
	= 6000N	
		$E_t = 1.2(3D_r^2 + 2)q_c$
	$\ddagger E_s = (15000 \text{ to } 22000) \cdot \ln N$	$*E_s = (1 + D_r^2)q_c$
Sand (saturated)	$E_s = 250(N + 15)$	$E_s = Fq_c$
		e = 1.0 $F = 3.5$
		e = 0.6 $F = 7.0$
Sands, all (norm. consol.)	$\P E_s = (2600 \text{ to } 2900) N$	
Sand (overconsolidated)	$\dagger E_s = 40000 + 1050N$	$E_s = (6 \text{ to } 30)q_c$
	$E_{s(\text{OCR})} \approx E_{s,\text{nc}} \sqrt{\text{OCR}}$	
Gravelly sand	$E_s = 1200(N+6)$	
	$= 600(N+6) \qquad N \le 15$	
	$= 600(N+6) + 2000 \qquad N > 1$	15
Clayey sand	$E_s = 320(N + 15)$	$E_s = (3 \text{ to } 6)q_c$
Silts, sandy silt, or clayey silt	$E_s = 300(N+6)$	$E_s = (1 \text{ to } 2)q_c$
	If $q_c < 2500$ kPa use ${}^{\$}E'_s =$	$2.5q_c$
	$2500 < q_c < 5000 \text{ use} \qquad E'_s = $ where	$4q_c + 5000$
	$E'_s = \text{constrained modulus} = \frac{E_s}{(1 + \mu)^2}$	$\frac{(1-\mu)}{\mu(1-2\mu)} = \frac{1}{m_v}$
Soft clay or clayey silt		$E_s = (3 \text{ to } 8)q_c$

General Range of E_s

Soil	E_s , MPa
Clay	
Very soft	2-15
Soft	5-25
Medium	15-50
Hard	50-100
Sandy	25-250
Glacial till	
Loose	10-150
Dense	150-720
Very dense	500-1440
Loess	15-60
Sand	
Silty	5-20
Loose	10-25
Dense	50-81
Sand and gravel	
Loose	50-150
Dense	100-200
Shale	150-5000
Silt	2-20

Poisson's Ratio

Type of soil	μ
Clay, saturated	0.4-0.5
Clay, unsaturated	0.1-0.3
Sandy clay	0.2-0.3
Silt	0.3-0.35
Sand, gravelly sand	0.1-1.00
commonly used	0.3-0.4
Rock	0.1-0.4 (depends somewhat on
	type of rock)
Loess	0.1-0.3
Ice	0.36
Concrete	0.15
Steel	0.33