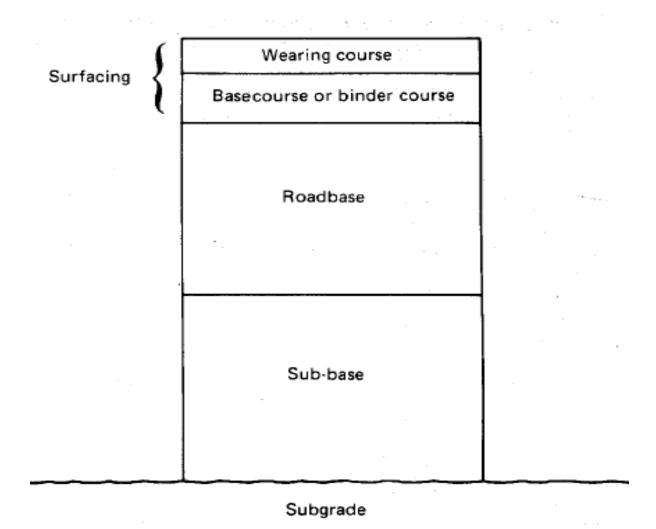
OVERSEAS ROAD NOTE 31

A GUIDE TO THE STRUCTURAL DESIGN OF BITUMEN-SURFACED ROADS IN TROPICAL AND SUB-TROPICAL COUNTRIES

- Parent fines are the fines developed during crushing of rocks. These are usually 5 mm or less in size. These should be used to fill the voids of aggregates.
- Macadam developed the design procedure for the construction of pavements.
- Particle size is 37.5 mm or 50 mm in Dry Bound Macadam and Water Bound Macadam.

- In Dry Bound Macadam, vibrations are used to fill the parent fines into the voids of gravels.
- In Water Bound Macadam, water is used to fill the parent fines into the voids of gravels. This technique gives better results normally to fill the voids. But if the subgrade is clayey then water will reduce its strength.

- CBR > 80% for Base Material
- If CBR > 30% for subgrade, then Sub-base is not required
- If subgrade has CBR < 4%, then use Capping Layer
- There are two types of Surface Dressings
 - 1. Single Surface Dressing
 - 2. Double Surface Dressing

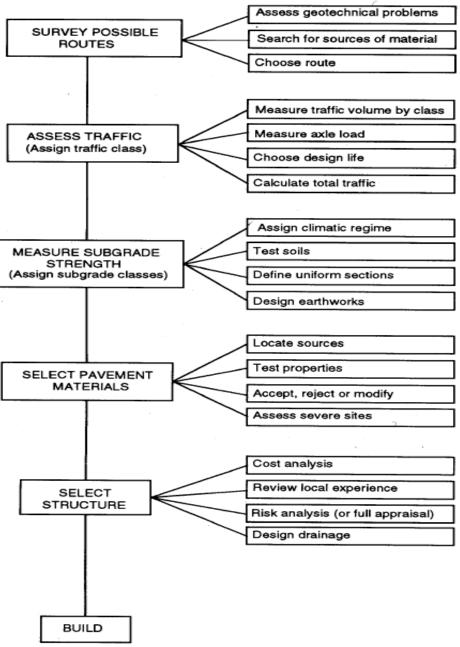

Single surface dressings are normally adequate when applied to a bituminous layer. To be satisfactory for non-bituminous surfacings, the quality of a single seal must be very high and subsequent minor maintenance must be carried out promptly when required.

It is recommended that <u>double surface dressings</u> are always used on non-bituminous layers. The quality of a double surface dressing will be greatly enhanced if traffic is allowed to run on the first dressing for a minimum period of 2-3 weeks (and preferably longer) before the second dressing is applied. This allows the chippings of the first dressing to adopt a stable interlocking mosaic which provides a firm foundation for the second dressing. If the trafficking results in the contamination of the first dressing with mud or soil, this should be thoroughly cleaned off before the second dressing is applied.

Sand may sometimes be used as an alternative to chippings for the second dressing. Although this cannot contribute to the overall thickness of the surfacing, the combination of binder and sand provides a useful grouting medium for the chippings of the first seal and helps to hold them in place more firmly if they are poorly shaped. A slurry seal may also be used for the same purpose.

Flexible bituminous surfacing

It is essential that the thin bituminous surfacings (50mm) recommended for structures described in Charts 3,4 and 7 of the structural catalogue are flexible. This is particularly important for surfacings laid on granular roadbases. Mixes which are designed to have good durability rather than high stability are flexible and are likely to have 'sand' and bitumen contents at the higher end of the permitted ranges. In areas where the production of sand-sized material is expensive and where there is no choice but to use higher stability mixes, additional stiffening through the ageing and embrittlement of the bitumen must be prevented by applying a surface dressing.


Nomenclature

The Design Process

There are three main steps to be followed in designing a new road pavement These are:

- estimating the amount of traffic and the cumulative number of equivalent standard axles that will use the road over the selected design life;
- (ii) assessing the strength of the subgrade soil over which the road is to be built;
- (iii) selecting the most economical combination of pavement materials and layer thicknesses that will provide satisfactory service over the design life of the pavement (It is usually necessary to assume that an appropriate level of maintenance is also carried out).

SUB-ACTIVITIES

Equivalence factors for different axle loads

	Wheel load (single & dual) (10³ kg)	Axle load (10 ³ kg)	Equivalence factor	
1	1.5	3.0	0.01	
	2.0	4.0	0.04	
	2.5	5.0	0.11	
	3.0	6.0	0.25	•
	3.5	7.0	0.50	
	4.0	8.0	0.91	
	4.5	9.0	1.55	
	5.0	10.0	2.50	
	5.5	11.0	3.83	
***	6.0	12.0	5.67	
	6.5	13.0	8.13	
	7.0	14.0	11.3	
	7.5	15.0	15.5	
	8.0	16.0	20.7	
i	8.5	17.0	27.2	
	9.0	18.0	35.2	
	9.5	19.0	44.9	
	10.0	20.0	56.5	

Equivalence factor = $\left(\frac{\text{Axle load (kg)}}{8160}\right)^{4.5}$

Traffic classes

Traffic classes	Range (10 ⁶ esa)
T1	< 0.3
T2	0.3 - 0.7
Т3	0.7 - 1.5
T4	1.5 - 3.0
T5	3.0 - 6.0
T6	6.0 - 10
T 7	10 - 17
T8	17 - 30

Subgrade strength classes

Class	Range (CBR %)				
S1	2				
S2	3 - 4				
S3	5 - 7				
S4 S5 S6	8 - 14				
S5	15 - 29 ⁻				
S6	30				

Properties of unbound materials

Code	Description	Summary of specification		
GB1,A	Fresh, crushed rock	Dense graded, unweathered crushed stone, non-plastic parent fines		
GB1,B	Crushed rock, gravel or boulders	Dense grading, PI < 6, soil or parent fines		
GB2,A	Dry-bound macadam	Aggregate properties as for GB1,B (see text), PI < 6		
GB2,B	Water-bound macadam	Aggregate properties as for GB1,B (see text), PI < 6		
GB3	Natural coarsely graded granular material including processed and modified gravels	Dense grading, PI < 6 CBR after soaking > 80		
GS	Natural gravel	CBR after soaking > 30		
GC	Gravel or gravel-soil	Dense graded, CBR after soaking > 15		

Notes

- 1. These specifications are sometimes modified according to site conditions, material type and principal use (see text).
- 2. GB = Granular roadbase, GS = Granular sub-base, GC = Granular capping layer.

Recommended plasticity characteristics for granular sub-bases (GS)

Climate	Liquid Limit	Plasticity Index	Linear Shrinkage
Moist tropical and wet tropical	<35	<6	<3
Seasonally wet tropical	<45	<12	<6
Arid and semi-arid	<55	<20	<10

Properties of cement and lime-stabilised materials

Code	Description	Unconfined compressive strength* (MPa)
CB1	Stabilised roadbase	3.0 - 6.0
CB2	Stabilised roadbase	1.5 - 3.0
CS	Stabilised sub-base	0.75 - 1.5

^{*} Strength tests on 150 mm cubes (see Section 7.4)

Guide to the type of stabilisation likely to be effective

Type of	More	than 25% nassi		operties	han 25% nacc	ing the
stabilisation	More than 25% passing the 0.075 mm sieve			Less than 25% passing th 0.075 mm sieve		-
	PI≤10	10 <pi≤20< th=""><th>PI>20</th><th>PI≤6 PP≤60</th><th>PI≤10</th><th>PI > 10</th></pi≤20<>	PI>20	PI≤6 PP≤60	PI≤10	PI > 10
Cement	Yes	Yes	*	Yes	Yes	Yes
Lime	*	Yes	Yes	No		Yes
Lime-Pozzolan	Yes	*	No	Yes	Yes	*

- 1. * Indicates that the agent will have marginal effectiveness
- 2. PP = Plasticity Product (see Chapter 6).

Notes.

PP = PI x (percentage passing the 0.075 mm sieve)

Summary of material requirements for the design charts

CHART NO	SURFACING	ROADBASE
1	Double surface dressing	T1-T4 use GB1,GB2 or GB3 T5 use GB1,A or GB1,B T6 must be GB1,A
2	Double surface dressing	T1-T4 use GB1, GB2 or GB3 T5 use GB1 T6,T7,T8 use GB1,A
3	'Flexible' asphalt	T1-T4 use GB1 or GB2 T5 use GB1 T6 use GB1,A
4	'Flexible' asphalt	T1-T4 use GB1 or GB2 T5 use GB1 T6-T8 use GB1,A
5	Wearing course and basecourse	GB1,A
6	Wearing course and basecourse	GB1 or GB2
7	High quality single seal or double seal for T4. 'Flexible' asphalt for T5-T8	RB1, RB2 or RB3
8	Double surface dressing	CB1, CB2
RB1 RB2 & RB3	Bitumen Macadam Roadbase Rolled Asphalt Roadbase	Bitumen Content 4.0±0.5 Bitumen Content 5.7±0.6

KEY TO STRUCTURAL CATALOGUE

Traffic clas	ses Subgrade strength classes
(10° esa)	(CBR%)
T1 = < 0.3	
T2 = 0.3 -	
T3 = 0.7 -	
T4 = 1.5 -	0.0
T5 = 3.0 - T6 = 6.0 -	
T7 = 10 -	
T8 = 17 -	17
	Material Definitions
	Double surface dressing
	Flexible bituminous surface
	Bituminous surface
	(Usually a wearing course, WC, and a basecourse, BC)
	, , , , , , , , , , , , , , , , , , , ,
	Bituminous roadbase, RB
	,
	Granular roadbase, GB1 - GB3
	Granular sub hass CC
	Granular sub-base, GS
	Granular capping layer or selected subgrade fill, GC
	Grandial capping layer of selected subgrade IIII, GC
7777	
	Cement or lime-stabilised roadbase 1, CB1
	Cement or lime-stabilised roadbase 2, CB2

Cement or lime-stabilised sub-base, CS

KEY TO STRUCTURAL CATALOGUE

Traffic classes (10° esa)

$$T1 = < 0.3$$

$$T2 = 0.3 - 0.7$$

$$T3 = 0.7 - 1.5$$

$$T4 = 1.5 - 3.0$$

$$T5 = 3.0 - 6.0$$

$$T6 = 6.0 - 10$$

$$T7 = 10 - 17$$

$$T8 = 17 - 30$$

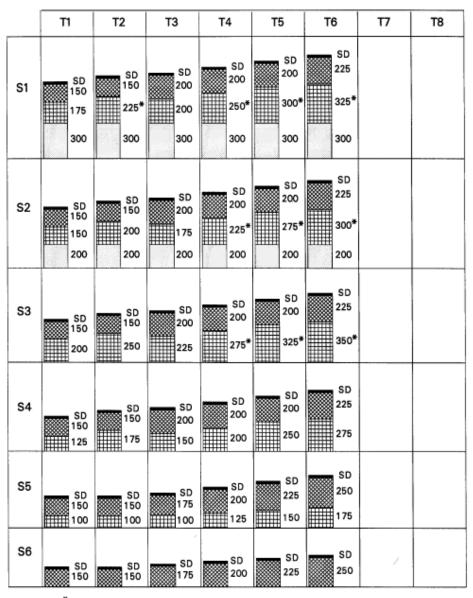
Subgrade strength classes (CBR%)

$$S1 = 2$$

$$S2 = 3, 4$$

$$S3 = 5 - 7$$

$$S4 = 8 - 14$$


$$S5 = 15 - 29$$

$$S6 = 30 +$$

Material Definitions

Double surface dressing
Flexible bituminous surface
Bituminous surface (Usually a wearing course, WC, and a basecourse, BC)
Bituminous roadbase, RB
Granular roadbase, GB1 - GB3
Granular sub-base, GS
Granular capping layer or selected subgrade fill, GC
Cement or lime-stabilised roadbase 1, CB1
Cement or lime-stabilised roadbase 2, CB2
Cement or lime-stabilised sub-base, CS

CHART 1 GRANULAR ROADBASE / SURFACE DRESSING

Note: 1 ** Up to 100mm of sub-base may be substituted with selected fill provided the sub-base is not reduced to less than the roadbase thickness or 200mm whichever is the greater.

The substitution ratio of sub-base to selected fill is 25mm: 32mm.

2 A cement or lime-stabilised sub-base may also be used.

CHART 2 COMPOSITE ROAD BASE (UNBOUND & CEMENTED) / SURFACE DRESSING

	T1	T2	Т3	T4	T5	Т6	T 7	T8
S1	SD 150 150 300	SD 150 175 300	SD 150 200 300	SD 150 225 300	SD 150 275 300	SD 150 125 150 150 300	SD 150 125 175 300	-
\$2	SD 125 150 200	SD 150 150 200	SD 150 175 200	SD 150 200 200	SD 150 250 200	SD 150 125 125 200	SD 150 125 175 200	
S3	SD 125 150 100	SD 125 150 125	SD 150 150 125	SD 150 175 150	SD 150 225 150	SD 150 125 125 125 150	SD 150 125 150 150	
S4	SD 125 150	SD 125 175	SD 150 175	SD 150 200	SD 150 250	SD 150 125 125	SD 150 125 175	
S5	SD 125 125	SD 125 125	SD 150 125	SD 150	SD 150 175	SD 150 200	SD 150 250	
S6	SD 150	SD 150	SD 175	SD 200	SD 225	SD 125 150	SD 150 175	

Note: Sub-base to fill substitution not permitted.

	ΤΊ	T2	ТЗ	T4	T5	Т6	77	Т8
S1			50 175 200 300	50 175 250*	50 175 300*	50 200 325* 300		
S2			50 175 175 200	50 175 225* 200	50 175 275* 200	50 200 300* 200		
S3			50 175 225	50 175 275*	50 175 325*	50 200 350*		
S4			50 175 150	50 175 200	50 175 250	50 200 275*		
S5			50 150 100	50 175 125	50 175 150	50 200 175		-
S6			50 150	50 175	50 200	50 225		

Note: 1 * Up to 100mm of sub-base may be substituted with selected fill provided the sub-base is not reduced to less than the roadbase thickness or 200mm whichever is the greater.

The substitution ratio of sub-base to selected fill is 25mm: 32mm.

2 A cement or lime-stabilised sub-base may also be used.

CHART 4 COMPOSITE ROADBASE / SEMI - STRUCTURAL SURFACE

	T1	T2	Т3	T4	T5	Т6	T7	Т8
S1			50 150 175 300	50 150 200 300	50 150 250 300	50 150 125 125 125 300	50 150 125 150 300	50 150 150 150 150 300
S2			50 150 175 200	50 150 200 200	50 150 225 200	50 150 125 125 200	50 150 125 150 200	50 150 150 150 200
\$3			50 150 150 125	50 150 150 150	50 150 200 150	50 150 250 150	50 150 125 125 125 150	50 150 150 125 150
S4			50 150 150	50 150 175	50 150 225	50 150 250	50 150 125 150	50 150 150 150
S5			50 125 125	50 150 125	50 150 150	50 150 175	50 150 225	50 150 125 125
S6	,		50 150	50 175	50 200	150 150	50 150 150	50 150 150

Note: Sub-base to fill substitution not permitted.

	T1	T2	Т3	T4	T5	T6	T7	Т8
S1						100 200 225* 350	125 225 225 350	150 250 250 350
S2						100 200 225° 200	1 25 225 225 200	150 250 250 250 200
S 3						100 200 250	1 25 225 250	150 250 275
S4						100 200 175	125 225 175	150 250 175
S5						100 200 100	125 225 100	150 250 100
S6						100	125 225	150 250

Note: 1 * Up to 100mm of sub-base may be substituted with selected fill provided the sub-base is not reduced to less than the roadbase thickness or 200mm whichever is the greater.

The substitution ratio of sub-base to selected fill is 25mm: 32mm.

² A cement or lime-stabilised sub-base may also be used.

CHART 6 COMPOSITE ROADBASE / STRUCTURAL SURFACE

	T1	T2	Т3	T4	T5	Т6	T7	Т8
S1						100 150 200 350	125 150 250 350	150 150 125 125 126 350
S2						100 150 200 200	125 150 250 200	150 150 125 125 125 200
S3						100 150 175 125	125 150 200 125	150 150 225 125
S4						100 150 175	125 150 200	150 150 225
S5						100 150 150	125 150 150	150 150 150
S6						100 100 150	125 100 150	150 100 150

Note: Sub-base to fill substitution not permitted.

CHART 7 BITUMINOUS ROADBASE / SEMI-STRUCTURAL SURFACE

-	T1	T2	Т3	T4	T5	Т6	T7	Т8
S1				SD 150 200 350	50 125 225*	50 150 225*	50 175 225*	50 200 250*
S2				SD 150 200 200	225* 200	225* 200	50 175 225* 200	50 200 250* 250*
S3				SD 150 250	50 125 250	50 150 275*	50 175 275*	50 200 275*
S4				SD 150 175	50 125 200	50 150 200	50 175 200	50 200 200
S5				SD 150 125	50 125 125	50 150 125	50 175 125	50 200 125
S6				SD 150	50 125	50 150	50 175	50 200

Note: 1 ** Up to 100mm of sub-base may be substituted with selected fill provided the sub-base is not reduced to less than the roadbase thickness or 200mm whichever is the greater.

The substitution ratio of sub-base to selected fill is 25mm: 32mm.

2 A cement or lime-stabilised sub-base may also be used but see Section 7.7.2.

CHART 8 CEMENTED ROADBASE / SURFACE DRESSING

	T1	T2	Т3	T4	T5	T6	T7	T8
S1	SD 150 150 150 350	SD 150 175 350	SD 175 175 350	SD 200 200 350	SD 200 225 350	SD 200 250 350		
S2	SD 150 150 225	SD 150 175 225	SD 175 175 225	SD 200 175 225	SD 200 225 225	SD 200 275 225		
S3	SD 150 150 150	SD 150 150 150 125	SD 175 150 125	SD 200 175 125	SD 200 200 125	SD 200 225 125		
\$4	SD 150 150	SD 150 150	SD 175 150	SD 200 100 100	SD 200 150 100	SD 200 200 100		
S5	SD 150 100	\$D 150 100	SD 175 100	SD 175 150	SD 200 175	SD 200 200		
S6	SD 150	SD 150	SD 175	SD 200	SD 225	SD 250		

Note: A granular sub-base may also be used.