

AASHTO Flexible Pavement Design Method

Design considerations for the AASHTO Flexible Pavement Design

The following factors are considered in the pavement thickness design.

- Pavement performance
- Traffic
- Roadbed soils (subgrade material)
- Materials of construction
- Environment
- Drainage
- Reliability

Pavement performance

Structural \rightarrow Cracking, faulting, raveling, etc.

Functional → Riding comfort (measured in terms of roughness of pavement.)

Serviceability Performance: Measured by PSI \rightarrow Present Serviceability Index with scale 0 to 5.

Pavement Condition

From the AASHO Road Test (1956 – 1961)

Typical PSI vs. Time

Traffic

* In the AASHTO flexible pavement design, traffic is considered in terms of ESAL for the terminal PSI (Table 20.13 for $p_t = 2.5$.)

Table 20.13a

Axle Load	Equivalency	Factors for	Flexible	Pavements,	Single Axles,	and p_i of 2.5
-----------	-------------	-------------	----------	------------	---------------	------------------

	Pavement Structural Number (SN)									
Axle Load - (kips)	1	2	3	4	5	6				
2	.0004 .003	.0004 .004	.0003 .004	.0002 .003	.0002 .002	.0002 .002				
6 8	Table 20.13b Axle Load Ec) juivalency Fa	actors for Fle	xible Paveme	ents, Tandem	Axles, and j	p, of 2.5			
10 12			Pave	ment Structur	al Number (S	N)				
	Axle Load - (kips)	1	2	3	4	5	6			
	2	.0001	.0001	.0001	.0000	.0000	.0000			
	4	.0005	.0005	.0004	.0003	.0003	.0002			

Roadbed soils (Subgrade material)

CBR (California Bearing Ratio), R-value (Resistance), and M_r (Resilient modulus) are used to describe the property of the subgrade material.

During the structural design, only M_r values are used. The following conversion formulas are used if either CBR or R-values are given.

 M_r (lb/in²) = 1500 x CBR for fine-grained soils with soaked CBR of 10 or less. M_r (lb/in²) = 1000 + 555 x (R-value) for R <= 20

Materials of construction (Subbase), a₃

Charts are available to convert the properties of pavement construction materials to structural coefficients: a_3 , a_2 , and a_1

Materials of construction (AC surface), a₁

Figure 20.17 Chart for Estimating Structural Layer Coefficient of Dense-Graded/Asphalt Concrete Based on the Elastic (Resilient) Modulus

Effective Roadbed Soil Resilient Modulus, M_r (lb/in.²) = <u>7250</u> (corresponds to \overline{u}_f)

Environment

Temperature and rainfall affect the level of strength of the subgrade, reflected on the value of resilient modulus. AASHTO developed a chart that helps us to estimate the effective roadbed soil resilient modulus using the serviceability criteria (in terms of "relative damage, u_f .")

Determine the average u_f .
value and obtain M_r from the chart or the equation of u_f .

♦ The bar on the right is used twice: Once to read u_f value for each month's sample M_r , then to read annual average M_r using the average u_f value.

Drainage

The effect of drainage on the performance of flexible pavements is considered with respect to the effect of water on the strength of the base material and roadbed soil.

• This effect is expressed by the drainage coefficient, m_i . This value is dependent on the drainage quality and the percent of time i.e., the time to which a pavement structure is exposed to moisture levels approaching saturation.

Definition of drainage quality and finding recommended m_i values

Table 20.14 Definition of Drainage Quality

	Quality of Drainage Excellent	Water R 2 hours	emoved Within*	Time drain	required to the			
Step 1	Good Fair Poor	1 day 1 week 1 mont	n 	50%	% saturation.			
Table 20.15	very poor	(water	will not drain)					
Recommended /	n _i Values				If "Fair" and 3	0%		
	Percent to M	t of Time Pavem loisture Levels A	ent Structure Is Ez pproaching Satura	xposed tion	exposure, then is 0.80.	<i>m</i> _i		
Quality of Drainage	Less Than 1 Percent	1–5 Percent	5–25 Percent	Grea 25	iter Than Percent			
Dramage								
Excellent	1.40–1.35	1.35-1.30	1.30-1.20	-	1.20			
Excellent Good	1.40–1.35 1.35–1.25	1.35–1.30 1.25–1.15	1.30–1.20 1.15–1.00		1.20 1.00	_		
Excellent Good Fair	1.40–1.35 1.35–1.25 1.25–1.15	1.35–1.30 1.25–1.15 1.15–1.05	1.30–1.20 1.15–1.00 1.00–0.80	Γ	1.20 1.00 0.80 Step 2			
Excellent Good Fair Poor	1.40–1.35 1.35–1.25 1.25–1.15 1.15–1.05	1.35–1.30 1.25–1.15 1.15–1.05 1.05–0.80	1.30–1.20 1.15–1.00 1.00–0.80 0.80–0.60	Ľ	1.20 1.00 0.80 Step 2			

Reliability

The reliability factor (F_R) is computed using:

The Reliability design level (R%), which determines assurance levels that the pavement section designed using the procedure will survive for its design period (it is a z-score from the standard normal distribution)

The standard deviation (S_o) that accounts for the chance variation in the traffic forecast and the chance variation in actual pavement performance for a given design period traffic, W_{18} .

$\log_{10} F_R =$	$=-Z_RS_o$	Flexible pavements	SD, S _o 0.40-0.5		
	Standard Normal	Rigid pavements	0.30-0.40		
Reliability (R%)	Deviation, Z_R				
50	-0.000	<u>Functional Classification</u> <u>Rec</u>	ommended I	Level of Reli	ability
60	-0.253		Urbon	Dural	
70	-0.524	Interstate and other freeways	<u>85-99.9</u>	<u>Kurar</u> 80-99.9	
95	-1.645	Principal arterial	80-99	75-95	
96	-1.751	Collectors	80-95	75-95	
97	-1.881	Local	50-80	50-80	
00	0.054				

Structural design

* The object of the design using the AASHTO method is to determine a flexible pavement SN adequate to carry the projected design ESAL.

The method discussed in the text applies to ESALs greater than 50,000 for the performance period. The design for ESALs less than this is usually considered under low-volume roads.

$$\log_{10} W_{18} = Z_R S_o + 9.36 \log_{10} (SN + 1) - 0.20$$

+
$$\frac{\log_{10} [\Delta PSI / (4.2 - 1.5)]}{0.40 + [1094 / (SN + 1)^{5.19}]}$$

+
$$2.32 \log_{10} M_r - 8.07$$

Where
$$SN = a_1 D_1 + a_2 D_2 m_2 + a_3 D_3 m_3$$

Simplify this as $f(W_{18}) = f(Z_R S_o) + f(SN)$

How to use Fig. 20.20 to get structural numbers based on Eq. 20.13

Once SN value is set, thickness design begins...

SN₁

 D_2

 D_3

$$SN = a_1 D_1 + a_2 D_2 m_2 + a_3 D_3 m_3$$

 $SN_1 = a_1 D_1$

Proceed in this direction

$$SN_2 = a_1D_1 + a_2D_2m_2$$

$$SN_3 = a_1D_1 + a_2D_2m_2 + a_3D_3m_3$$

Use Fig.20.15 for a_3 , Fig.20.16 for a_2 , Fig.20.17 for a_1 , and Tab. 20.14 and 20.15 m₂ and m₃. Find the depth that results in a SN value close to the SN value obtained from Fig. 20.20.

	Minimum Thickness (in.)					
Traffic, ESALs	Asphalt Concrete	Aggregate Base				
Less than 50,000	1.0 (or surface treatment)	4				
50,001-150,000	2.0	4				
150,001-500,000	2.5	4				
500,001-2,000,000	3.0	6				
2,000,001-7,000,000	3.5	6				
Greater than 7,000,000	4.0	6				

Axle Load	The state of the state	Pav	ement Structur	al Number (SN))	
(kips)	1	2	3	4	5	6
2	.0004	.0004	.0003	.0002	.0002	.0002
4	.003	.004	.004	.003	.002	.002
6	.011	.017	.017	.013	.010	.009
8	.032	.047	.051	.041	.034	.031
10	.078	.102	.118	.102	.088	.080
12	.168	.198	.229	.213	.189	.176
14	.328	.358	.399	.388	.360	.342
16	.591	.613	.646	.645	.623	.606
18	1.00	1.00	1.00	1.00	1.00	1.00
20	1.61	1.57	1.49	1.47	1.51	1.55
22	2.48	2.38	2.17	2.09	2.18	2.30
24	3.69	3.49	3.09	2.89 .	3.03	3.27
26	5.33	4.99	4.31	3.91	4.09	4.48
28	7.49	6.98	5.90	5.21	5.39	5.98
30	10.3	9.5	7.9	6.8	7.0	7.8
32	13.9	12.8	10.5	8.8	8.9	10.0
34	18.4	16.9	13.7	11.3	11.2	12.5
36	24.0	22.0	17.7	14.4	13.9	15.5
38	30.9	28.3	22.6	18.1	17.2	19.0
40	39.3	35.9	28.5	22.5	21.1	23.0
42	49.3	45.0	35.6	27.8	25.6	27.7
44	61.3	55.9	44.0	34.0	31.0	33.1
46	75.5	68.8	54.0	41.4	37.2	39.3
48	92.2	83.9	65.7	50.1	44.5	46.5
50	112.	102.	79.	60.	53.	55.

Table 20.13	Axle Load E	txie Load Equivalency Factors for Flexible Pavements, Tandem Axles and pt of 2.5									
Axle Load	-	P	avement Structu	tral Number (SN	0						
(kips)	1	2	3	4	5	6					
2	.0001	.0001	.0001	.0000	.0000	.0000					
4	.0005	.0005	.0004	.0003	.0003	.0002					
6	.002	.002	.002 .	.001	.001	.001					
8	.004	.006	.005	.004	.003	.003					
10	.008	.013	.011	.009	.007	.006					
12	.015	.024	.023	.018	.014	.013					
14	.026	.041	.042	.033	.027	.024					
16	.044	.065	.070	.057	.047	.043					
18	.070	.097	.109	.092	.077	.070					
20	.107	.141	.162	.141	.121	.110					
22	.160	.198	.229	.207	.180	.166					
24	.231	.273	.315	.292	.260	.242					
26	.327	.370	.420	.401	.364	.342					
28	.451	.493	.548	.534	.495	.470					
30	.611	.648	.703	.695	.658	.633					
32	.813	.843	.889	.887	.857	.834					
34	1.06	1.08	1.11	1.11	1.09	1.08					
36	1.38	1.38	1.38	1.38	1.38	1.38					
38	1.75	1.73	1.69	1.68	1.70	1.73					
40	2.21	2.16	2.06	2.03	2.08	2.14					
42	2.76	2.67	2.49	2.43	2.51	2.61					
44	3.41	3.27	2.99	2.88	3.00	3.16					
46	4.18	3.98	3.58	3.40	3.55	3.79					
48	5.08	4.80	4.25	3.98	4.17	4.49					
50	6.12	5.76	5.03	4.64	4.86	5.28					
52	7.33	6.87	5.93	5.38	5.63	6.17					
54	8.72	8.14	6.95	6.22	6.47	7.15					
56	10.3	9.6	8.1	7.2	7.4	8.2					
58	12.1	11.3	9.4	8.2	8.4	9.4					
60	14.2	13.1	10.9	9.4	9.6	10.7					
62	16.5	15.3	12.6	10.7	10.8	12.1					
64	19.1	17.6	14.5	12.2	12.2	13.7					
66	22.1	20.3	16.6	13.8	13.7	15.4					
68	25.3	23.3	18.9	15.6	15.4	17.2					
70	29.0	26.6	21.5	17.6	17.2	19.2					

Reliability (%)	Standard normal deviate (Z_R)	Reliability (%)	Standard normal deviate (Z_R)
50	0.000	93	-1.476
60	-0.253	94	-1.555
70	-0.524	95	-1.645
75	-0.674	96	-1.751
80	-0.841	97	-1.881
85	-1.037	98	-2.054
90	-1.282	99	-2.327
91	-1.340	99.9	-3.090
92	-1.405	99.99	-3.750

Equivalent Axle Load Factors, Single axles

Axle Load	$p_t = 2.0$					$p_t = 2.5$				$p_t = 3.0$			
(ырэ)		S	N			SN				SN			
	3	4	5	6	3	4	5	6	3	4	5	6	
2	0.0002	0.0002	0.0002	0.0002	0.0003	0.0002	0.0002	0.0002	0.0006	0.0003	0.0002	0.0002	
4	0.003	0.002	0.002	0.002	0.004	0.003	0.002	0.002	0.006	0.004	0.002	0.002	
6	0.011	0.010	0.009	0.009	0.017	0.013	0.010	0.009	0.028	0.018	0.012	0.010	
8	0.036	0.033	0.031	0.029	0.051	0.041	0.034	0.031	0.080	0.055	0.040	0.034	
10	0.090	0.085	0.079	0.076	0.118	0.102	0.088	0.080	0.168	0.132	0.101	0.086	
12	0.189	0.183	0.174	0.168	0.229	0.213	0.189	0.176	0.296	0.260	0.212	0.187	
14	0.354	0.350	0.338	0.331	0.399	0.388	0.360	0.342	0.468	0.447	0.391	0.058	
16	0.613	0.612	0.603	0.596	0.646	0.645	0.623	0.606	0.695	0.693	0.651	0.622	
18	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
20	1.56	1.55	1.57	1.59	1.49	1.47	1.51	1.55	1.41	1.38	1.44	1.51	
22	2.35	2.31	2.35	2.41	2.17	2.09	2.18	2.30	1.96	1.83	1.97	2.16	
24	3.43	3.33	3.40	3.51	3.09	2.89	3.03	3.27	2.69	2.39	2.60	2.96	
26	4.88	4.68	4.77	4.96	4.31	3.91	4.09	4.48	3.65	3.08	3.33	3.91	
28	6.78	6.42	6.52	6.83	5.90	5.21	5.69	5.98	4.88	3.93	4.17	5.00	
30	9.2	8.6	8.7	9.2	7.9	6.8	7.0	7.8	6.5	5.0	5.1	6.3	
32	12.4	11.5	11.5	12.1	10.5	8.8	8.9	10.0	8.4	6.2	6.3	7.7	
34	16.3	15.0	14.9	15.6	13.7	11.3	11.2	12.5	10.9	7.8	7.6	9.3	
36	21.2	19.3	19.0	19.9	17.7	14.4	13.9	15.5	14.0	9.7	9.1	11.0	
38	27.1	24.6	24.0	25.1	22.6	18.1	17.2	19.0	17.7	1.9	11.0	13.0	
40	34.3	30.9	30.0	31.2	28.5	22.5	21.1	23.0	22.2	14.6	13.1	15.3	

Equivalent Axle Load Factors, tandem axles

Axle Load (kips)		$p_t =$	= 2.0			$p_t =$	= 2.5			$p_t =$	= 3.0	
(-1-)		S	N			S	N			S	N	
	3	4	5	6	3	4	5	6	3	4	5	6
10	0.008	0.007	0.006	0.006	0.011	0.009	0.007	0.006	0.020	0.012	0.008	0.007
12	0.016	0.014	0.013	0.012	0.023	0.018	0.014	0.013	0.039	0.024	0.017	0.014
14	0.029	0.026	0.024	0.023	0.042	0.033	0.027	0.024	0.068	0.045	0.032	0.026
16	0.050	0.046	0.042	0.040	0.070	0.057	0.047	0.043	0.109	0.076	0.055	0.046
18	0.081	0.075	0.069	0.066	0.109	0.092	0.077	0.070	0.164	0.121	0.090	0.076
20	0.124	0.117	0.109	0.105	0.162	0.141	0.121	0.110	0.232	0.182	0.139	0.119
22	0.183	0.174	0.164	0.158	0.229	0.207	0.180	0.166	0.313	0.2.60	0.205	0.178
24	0.260	0.252	0.239	0.231	0.315	0.292	0.260	0.242	0.407	0.358	0.292	0.257
26	0.360	0.353	0.338	0.329	0.420	0.401	0.364	0.342	0.517	0.476	0.402	0.360
28	0.487	0.481	0.466	0.455	0.548	0.534	0.495	0.470	0.643	0.614	0.538	0.492
30	0.646	0.643	0.627	0.617	0.703	0.695	0.658	0.633	0.788	0.773	0.702	0.656
32	0.843	0.842	0.829	0.819	0.889	0.887	0.857	0.834	0.956	0.953	0.896	0.855
34	1.08	1.08	1.08	1.07	1.11	1.11	1.09	1.08	1.15	1.15	1.12	1.09
36	1.38	1.38	1.38	1.38	1.38	1.38	1.38	1.38	1.38	1.38	1.38	1.38
38	1.73	1.72	1.73	1.74	1.69	1.68	1.70	1.73	1.64	1.62	1.66	1.70
40	2,15	2.13	2.16	2.18	2.06	2.03	2.08	2,14	1.94	1.89	1.98	2.08
42	2.64	2.62	2.66	2.70	2.49	2.43	2.51	2.61	2.29	2.19	2.33	2.50
44	3.23	3.18	3.24	2.31	2.99	2.88	3.00	3.16	2.70	2.52	2.71	2.97
46	3.92	3.83	3.91	4.02	3.58	3.40	3.55	3.79	3.16	2.89	3.13	3.50
48	4.72	4.58	4.68	4.83	4.25	3.98	4.17	4.49	3.70	3.29	3.57	4.07

Equivalent Axle Load Factors, triple axles

Axle Load		$p_t =$	= 2.0			$p_t =$	= 2.5			$p_t = 3.0$			
(kips)		S	N			S	N			S	N		
	3	4	5	6	3	4	5	6	3	4	5	6	
20	0.029	0.026	0.024	0.023	0.042	0.032	0.027	0.024	0.069	0.044	0.031	0.026	
22	0.042	0.038	0.035	0.034	0.060	0.048	0.040	0.036	0.097	0.065	0.046	0.039	
24	0.060	0.055	0.051	0.048	0.084	0.068	0.057	0.051	0.132	0.092	0.066	0.056	
26	0.083	0.077	0.071	0.068	0.114	0.095	0.080	0.072	0.174	0.126	0.092	0.078	
28	0.113	0.105	0.098	0.094	0.151	0.128	0.109	0.099	0.223	0.168	0.126	0.107	
30	0.149	0.140	0.131	0.126	0.195	0.170	0.145	0.133	0.279	0.219	0.167	0.143	
32	0.194	0.184	0.173	0.167	0.247	0.220	0.191	0.175	0.342	0.279	0.218	0.188	
34	0.248	0.238	0.225	0.217	0.308	0.281	0.246	0.228	0.413	0.350	0.279	0.243	
36	0.313	0.303	0.288	0.279	0.379	0.352	0.313	0.292	0.491	0.432	0.352	0.310	
38	0.390	0.381	0.364	0.353	0.461	0.436	0.393	0.368	0.577	0.524	0.437	0.389	
40	0.481	0.473	0.454	0.443	0.554	0.533	0.487	0.459	0.671	0.626	0.536	0.483	
42	0.57	0.580	0.561	0.548	0.661	0.644	0.597	0.567	0.775	0.740	0.649	0.593	
44	0.710	0.705	0.686	0.673	0.781	0.769	0.723	0.692	0.889	0.865	0.777	0.720	
46	0.852	0.849	0.831	0.818	0.918	0.911	0.868	0.838	1.01	1.00	0.920	0.865	
48	1.02	1.01	0.999	0.987	1.07	1.07	1.03	1.01	1.13	1.15	1.08	1.03	
50	1.20	1.20	1.19	1.18	1.24	1.25	1.22	1.20	1.30	1.31	1.26	1,22	
52	1.42	1.42	1.41	1.40	1.44	1.44	1.43	1.41	1.47	1.48	1.45	1.43	
54	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	
56	1.93	1.93	1.94	1.94	1.90	1.90	1.91	1.93	1.86	1.85	1.88	1.91	
58	2.42	2.23	2.25	2.27	2.17	2.16	2.20	2.24	2.09	2.06	2.13	2.20	

