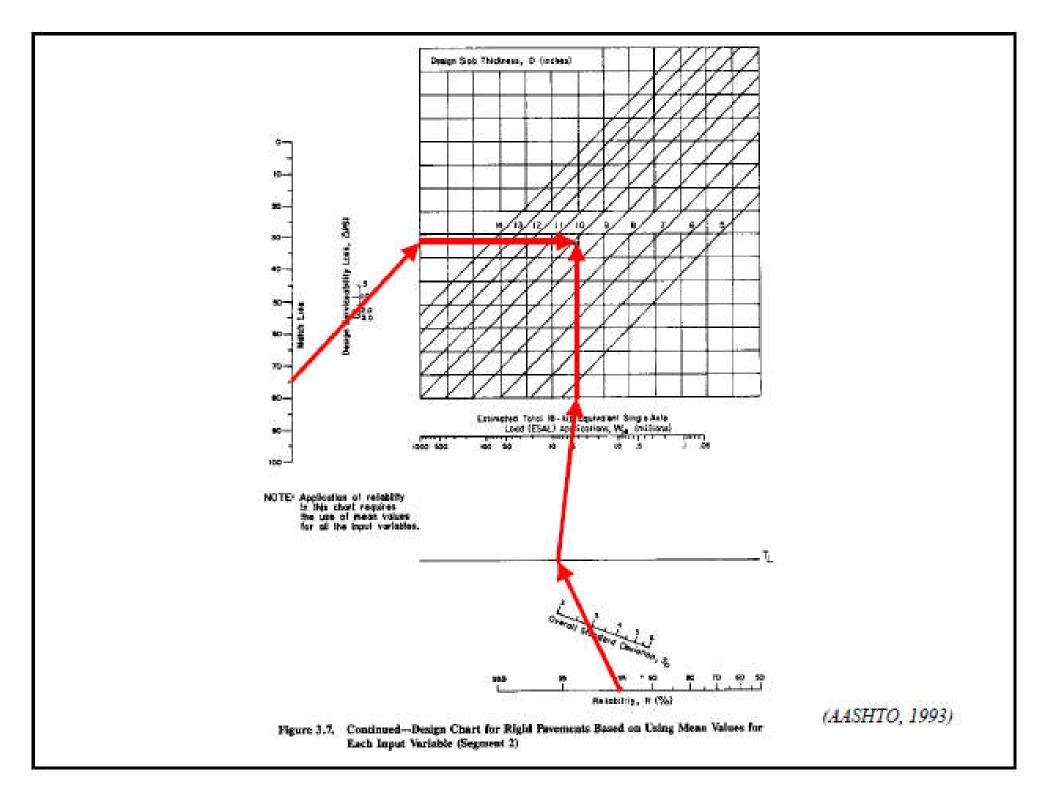

AASHTO RIGID PAVEMENT DESIGN METHOD

Design Equation


 $\log_{10}(W_{18}) = Z_R S_o + 7.35 \log_{10}(D+1) - 0.06$ PCC Thickness $+ \frac{\log_{10}\left[\frac{\Delta PSI}{4.5 - 1.5}\right]}{1 + \frac{1.64 \times 10^7}{(D+1)^{8.46}}} + (4.22 - 0.32 p_r) \log_{10}\left[\frac{S_c C_d (D^{0.75} - 1.132)}{215.63 J \left[D^{0.75} - \frac{18.42}{(E_c / k)^{0.25}}\right]}$

- W_{IB} = design traffic (18-kip ESALs)
- Z_R = standard normal deviate
- S_o = combined standard error of traffic and performance prediction
- D = thickness (inches) of pavement slab
- △PSI = difference between initial and terminal serviceability indices
- p_t = terminal serviceability value

- S_c ' = modulus of rupture (psi) for Portland cement concrete
- J =load transfer coefficient
- C_d = drainage coefficient
- $E_c =$ modulus of elasticity (psi) for Portland cement concrete
- k = modulus of subgrade reaction (pci)

Design Inputs

- W_{18} = design traffic (18-kip ESALs)
- Z_R = standard normal deviate
- $S_o =$ combined standard error of traffic and performance prediction
- ΔPSI = difference between initial and terminal serviceability indices
- p_t = terminal serviceability index (implicit in flexible design)

All consistent with flexible pavements!

Additional Design Inputs

- $S'_c =$ modulus of rupture for concrete
- J = joint load transfer coefficient
- C_d = drainage coefficient (similar in concept to flexible pavement terms)
- $E_c =$ modulus of elasticity for concrete
- k =modulus of subgrade reaction

Additional inputs reflect differences in materials and structural behavior.

Modulus of Rupture S.'

Because of the treatment of reliability in this Guide, it is strongly recommended that the normal construction specification for modulus of rupture (flexural strength) not be used as input, since it represents a value below which only a small percent of the distribution may lie. If it is desirable to use the construction specification, then some adjustment should be applied, based on the standard deviation of modulus of rupture and the percent (PS) of the strength distribution that normally falls below the specification:

$$S'_c(mean) = S_c + z(SD_s)$$

where

- S'_c = estimated mean value for PCC modulus of rupture (psi),
- S_c = construction specification on concrete modulus of rupture (psi),
- SD, = estimated standard deviation of concrete modulus of rupture (psi), and
- z = standard normal variate:
 - = 0.841, for PS = 20 percent,*
 - = 1.037, for PS = 15 percent,
 - = 1.282, for PS = 10 percent,
 - = 1.645, for PS = 5 percent, and
 - = 2.327, for PS = 1 percent.

*Note: Permissible number of specimens, expressed as a percentage, that may have strengths less than the specification value.

Joint Load Transfer Coefficient J

Pavement Type (no tied shoulders)	J
JCP/JRCP w/ load transfer devices	3.2
JCP/JRCP w/out load transfer devices	3.8-4.4
CRCP	2.9

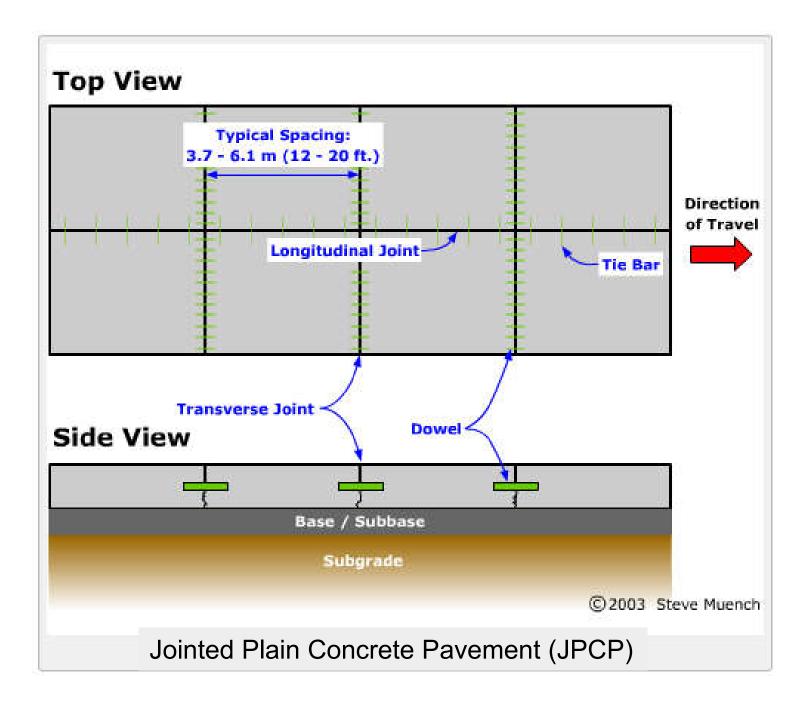
Types of Rigid Pavements

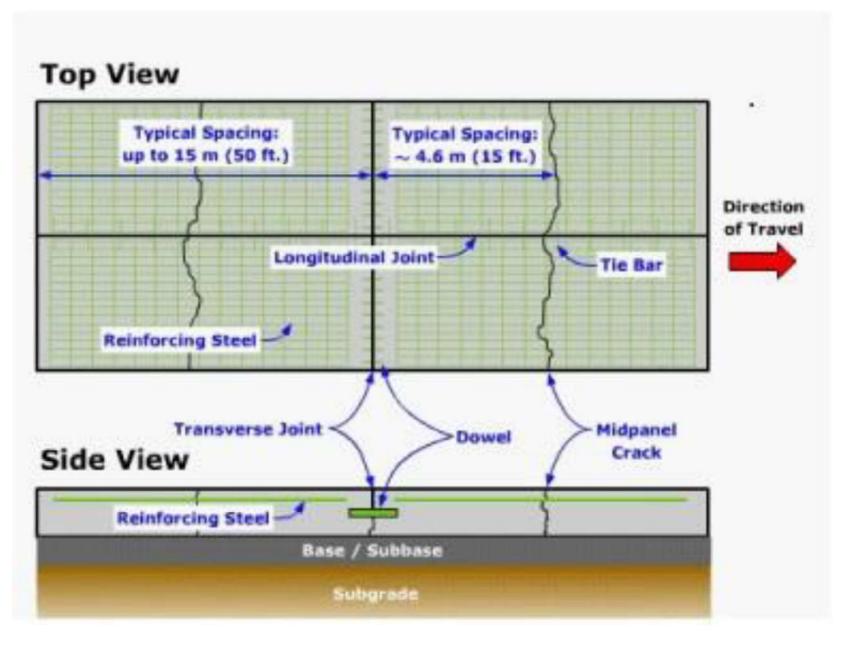
Jointed Plain Concrete Pavement (JPCP) or JCP

does not use any reinforcing steel

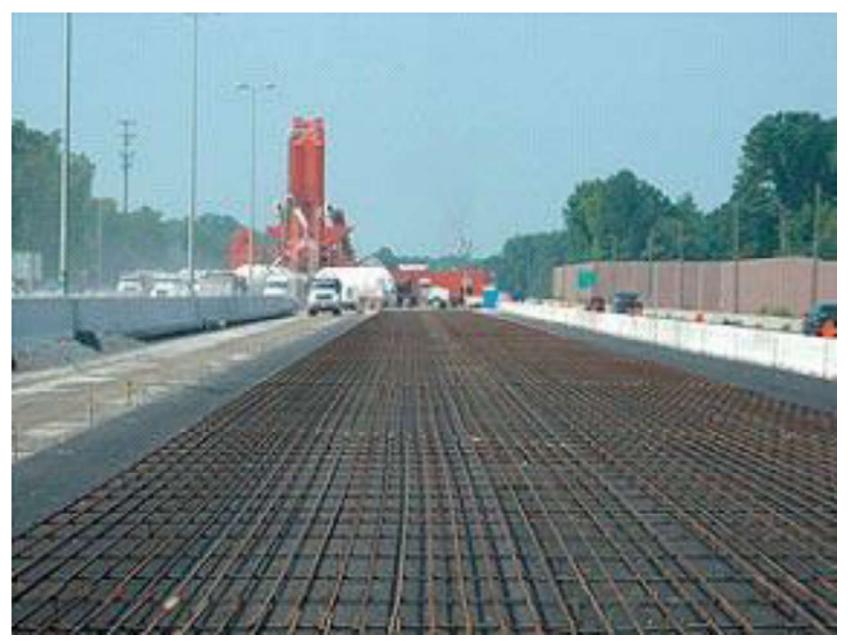
Jointed Reinforced Concrete Pavement (JRCP)

Reinforcing steel placed at mid height and discontinued at the joints.


Continuously Reinforced Concrete Pavement (CRCP)


- This method is very costly

Pre-stressed Concrete Pavement (PCP)


Comprises new and innovative construction methods

 Precast pavement components are fabricated and installed on a prepared foundation (existing pavement or re-graded foundation).

Jointed Reinforced Concrete Pavement (JRCP)

Continuously Reinforced Concrete Pavement (CRCP)

Different types of Load Transfer Devices

Joint Load Transfer Coefficient J

Additional benefits of tied shoulders:

	Shoulder	Asp	halt	Tied P.C.C.		
	Load Transfer Devices	Yes	No	Yes	No	
	Pavement Type					
1.	Plain jointed and jointed reinforced	3.2	3.8-4.4	2.5-3.1	3.6-4.2	
2.	CRCP	2.9-3.2	N/A	2.3-2.9	N/A	

Table 2.6. Recommended Load Transfer Coefficient for Various Pavement Types and Design Conditions

Drainage Coefficient C_d

Two effects:

- Subbase and subgrade strength/stiffness
- Joint load transfer effectiveness

		cent of Time Paver	nent Structure is Approaching Satu	같은 NON-DOCATIN 방송성 2
Quality of Drainage	Less Than 1%	1-5%	5-25%	Greater Than 25%
Excellent	1.25-1.20	1.20-1.15	1.15-1.10	1.10
Good	1.20-1.15	1.15-1.10	1.10-1.00	1.00
Fair	1.15-1.10	1.10-1.00	1.00-0.90	0.90
Poor	1.10-1.00	1.00-0.90	0.90-0.80	0.80
Very poor	1.00-0.90	0.90-0.80	0.80-0.70	0.70

Table 2.5. Recommended Values of Drainage Coefficient, Cd, for Rigid

PCC Modulus of Elasticity E_c

- Measure directly per ASTM C469
- Correlation w/ compressive strength:

 $E_c = 57,000 \ (f_c')^{0.5}$

 E_c = elastic modulus (psi) f_c' = compressive strength (psi) per AASHTO T22, T140, or ASTM C39

Effective Subgrade Modulus k

- Depends on:
 - Roadbed (subgrade) resilient modulus, M_R
 - Subbase resilient modulus, E_{SB}
- Both vary by season

Determining Effective k (See Table 3.2)

- Identify:
 - Subbase types
 - Subbase thicknesses
 - Loss of support, LS (erosion potential of subbase)
 - Depth to rigid foundation (feet)
- Assign roadbed soil resilient modulus (M_R) for each season
- Assign subbase resilient modulus (E_{SB}) for each season
 - 15,000 psi (spring thaw) $\leq E_{SB} \leq 50,000$ psi (winter freeze)
 - $E_{SB} \leq 4(M_R)$

Intel Subjects		s) LS	Projected S	gid Foundation (fe lab Thickness (incl		
(1)	(2)	(3)	40	(5)	(6)	
Moath	Roadbed Modulus, Mg (psi)	Subbase Modulus, E _{SE} (psi)	Composite k-Value (pci) (Fig. 3.3)	k-Value (pci) on Rigid Foundation (Fig. 3.4)	Relativo Damage, u. (Fig. 3.5)	
Jan.						
Peb.						
Mar.						
Apr.					- 10.	
May						
June						
July						
Aug.			-			
Sept.		-				
Get.						
Nov.				Norma Service		
Dec.						
Average; i	i, - Σω,		23	Summation: $\Sigma u_r =$		(AASHTO, 1993

Determining Effective k (cont'd)

- Determine composite k for each season
 - For $D_{SB} = 0$: $k = M_R/19.4$
 - For D_{SB} > 0: Use Figure 3.3
- If depth to rigid foundation < 10 feet, correct k for effect of rigid foundation near the surface (Figure 3.4)
- Estimate required thickness of slab (Figure 3.5) and determine relative damage u_r for each season
- Use average u_r to determine effective k (Figure 3.5)
- Correct k for potential loss of support LS (Figure 3.6)

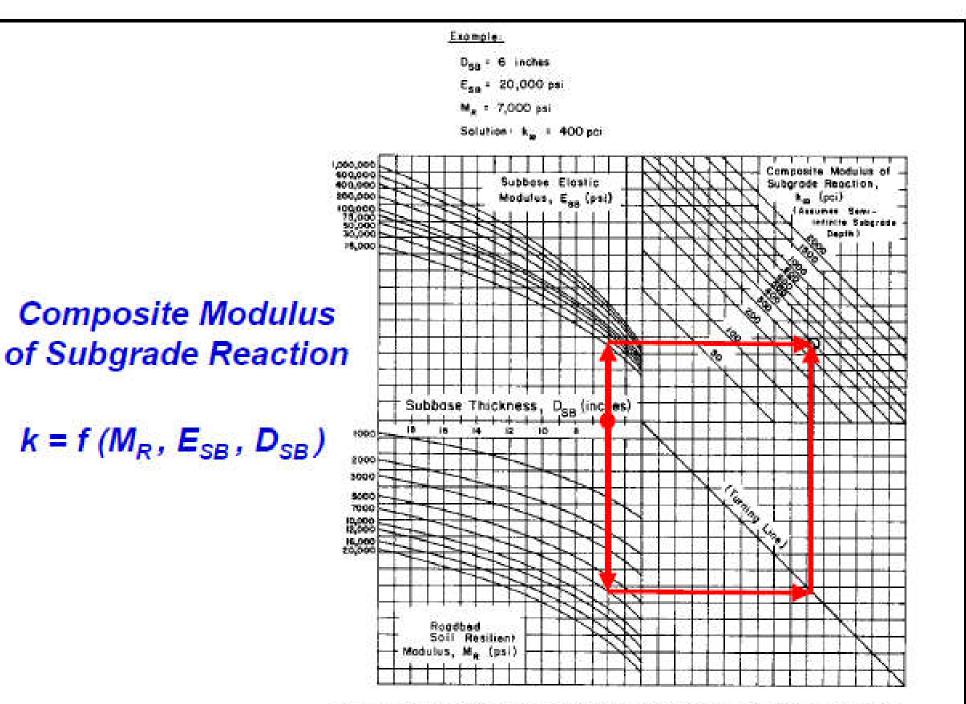
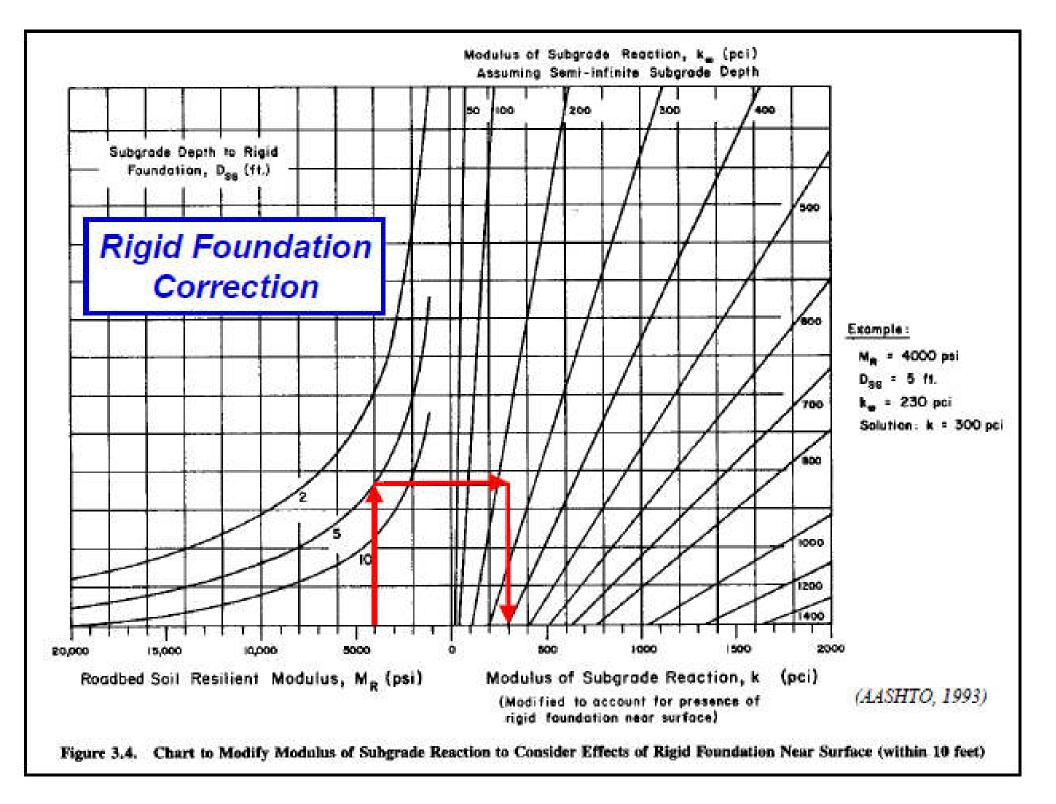
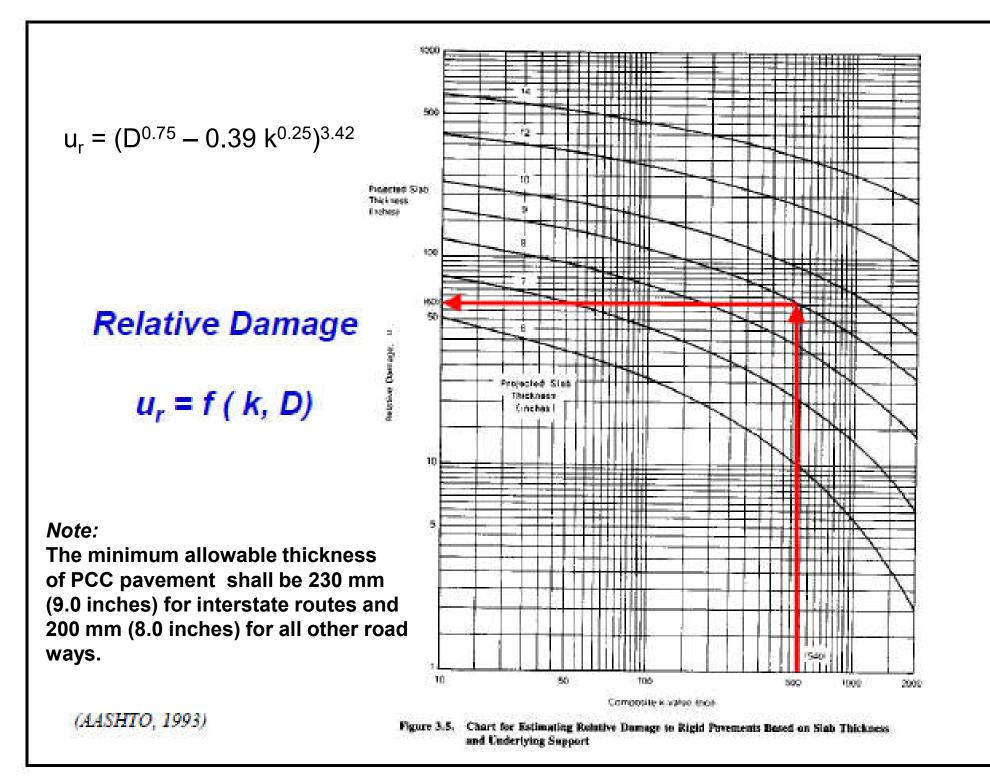
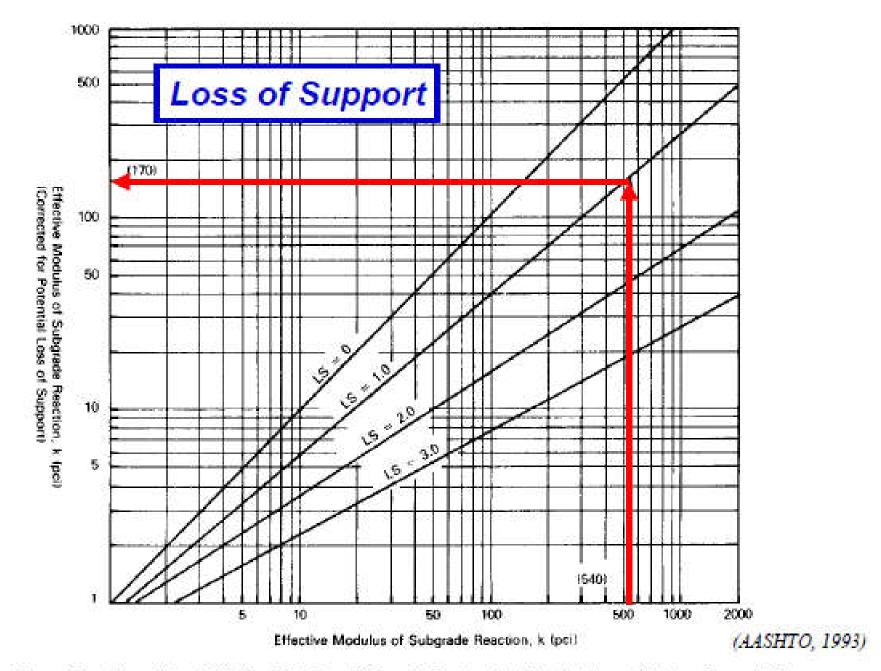




Figure 3.3. Chart for Estimating Composite Modulus of Subgrade Reaction, k_{*}, Assuming a Semi-Infinite Subgrade Depth. (For practical purposes, a semi-infinite depth is considered to be greater than 10 feet below the surface of the subgrade.)

Trial Subbase:	Thickness (inches)			gid Foundation (fee lab Thickness (inch		
	Less of Support, I		100	2	228	
Menth	(2) Roadbed Modulus, Mg (psi)	(3) Subbase Modulus, E _{sp} (psi)	(4) Composite k-Value (pci) (Fig. 3.3)	(5) k-Value (pci) on Rigid Foundation (Fig. 3-0)	(6) Relative Damage, a, (Fig. 3.5)	
Jan, -	20,000	50,000	1,000	1,350	0.35	
Feb.	20,000	50,000	1,100	1,350	0.35	
Mar.	2,500	15,000	160	230	0.86	
Apr.	4,000	15,000	230	300	0.78	
May	4,000	t5,000	230	300	0.78	
June -	7,000	28,000	410	540	0.60	
July	7,000	20,000	410	540	0.60	
Aug.	7,000	20,000	410	540	0.60	
Sept.	7,000	20,000	410	540	0.60	
0a.	7,000	20,000	410	540	0.60	
Nov	4,000	15,000	230	300	0.78	
Dec.	20,000	50,000	1,100	1.350	0.35	
	$x = \frac{\Sigma n_r}{n} = \frac{7.25}{12} = 0$	일정에 다니 아파 나는 것이다.	•• •••••••••••••••••••••••••••••••••••	Summation: Eu, =	7:35	(AASHTO, 1993


Loss of Support, LS

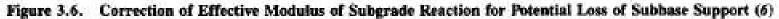

가슴 가슴 것 같아요. 바람이 많은 것 같아요. 바람이 바람이 가슴을 가슴을 가슴다. 가슴

Table 2.7.	Typical Ranges of Loss of S (LS) Factors for Various Ty Materials (6)	
т	ype of Material	Loss of Support (LS)
Cement Treate	d Granular Base	
(E = 1,000)	,000 to 2,000,000 psi)	0.0 to 1.0
Cement Aggre	gate Mixtures	
(E = 500, 0)	00 to 1,000,000 psi)	0.0 to 1.0
Asphalt Treate	d Base	
(E = 350, 0)	00 to 1,000,000 psi)	0.0 to 1.0
Bituminous Sta	abilized Mixtures	
(E = 40,00)	0 to 300,000 psi)	0.0 to 1.0
Lime Stabilize	d	
(E = 20,00)	0 to 70,000 psi)	1.0 to 3.0
Unbound Gran	ular Materials	
(E = 15,00)	0 to 45,000 psi)	1.0 to 3.0
Fine Grained of	or Natural Subgrade Materials	
(E = 3,000)	to 40,000 psi)	2.0 to 3.0

Subbase/subgrade erosion at joints causes Loss of Support, impairs load transfer.

NOTE: E in this table refers to the general symbol for elastic or resilient modulus of the material.

Intel Subbase:	: Type Thickness (inche Loss of Support,	12.000 - 42.000	Depth to Rigid Foundation (feet)5 Projected Slab Thickness (inches)9			
Ð	(2)	(3)	(4)	(5)	(6)	
Month	Roadbed Modulus, Ma (psl)	Subbuse Modulus, E _{NR} (psl)	Composite k-Value (pci) (Fig. 3.3)	k-Value (pci) on Rigid Feamdation (Fig. 3.4)	Relative Damage, a, (Fig. 3.5)	
Jan.	20,000	50,000	t, 100	1,350	0.35	
Peb.	20,000	50,000	1,100	1,359	0.35	
Mar.	2,500	15,000	150	230	0.86	
Apr.	4,000	15,000	230	300	0.78	
May	4,000	15,000	230	300	0.78	
June	7,000	28,900	410	540	0.60	
July	7,000 2	20,000	410	\$40	0.60	
Aug.	7,000	20,009	410	540	0.60	
Sept.	7,000 20	20,000	410	540	0.60	
Oct.	7,000	20,000	410	540	0.60	
Nov.	4,000	15,000	230	300	0.78	
Dec.	20,000	50,000	1,100	1,350	0.35	
Avenige: 1)	$=\frac{\Sigma u_r}{10}=\frac{7.25}{10}=$	0.60	1	Summation: $\Sigma u_r =$	7.25	

(AASHTO, 1993)

(AASH1

Examples:

 Apply AASHTO procedure to design a concrete pavement slab thickness for ESAL = 11×10^6 . The design reliability is 95% with a standard deviation of 0.3. The initial and terminal serviceability levels are 4.5 and 2.5, respectively. Other design parameters are $E_c = 5 \times 10^6$ psi, S'_c = 650 psi, J = 3.2, C_d = 1.0 and k = 72 pci.

- A concrete pavement is constructed on a 6 inch thick sub-base with elastic modulus of 20000 lb/in². The resilient modulus of the subgrade soil is 7000 lb/in². The depth of subgrade to bed rock is 5 ft. Compute composite modulus of subgrade reaction.
- The values of composite k determined at 1 month interval are 145, 145, 160, 160, 180, 180, 175, 175, 175, 175, 175, 175 and 175 pci. Determine effective modulus of subgrade reaction by considering relative damage and LS. Use $D_{min} = 9$ " and LS = 1.0.