

BASIC UNIT OF STORAGE

- A CIRCUIT in ON or OFF State
- Two numbers (or symbols) can be associated to these two states.
- The numbers are 1 and 0 ; the binary numbers
- The unit is termed as BIT (abbreviation of Blnary digit)

DATA TYPES

- Data may be classified into two broader classes:

1. Numeric
2. Non-Numeric

- Numbers may be whole or fractional
- Present discussion is limited to whole numbers only.

WHOLE NUMBERS

- WHOLE NUMBERS may be associated to bit patterns according to one of three conventions:
*TRUE NOTATION
*SIGNED NOTATION
*EXCESS NOTATION

FUNDAMENTAL UNIT OF STORAGE

- 8 bits integrated to make a BYTE
- BYTE can store 256 different patterns consisting of 0 s and 1 s .
- 256 different numbers can be associated to these patterns.
- Storage exists of millions of Bytes

LOCAL VALUE

- Consider the decimal number 4035
- The local value of 5 is only $\underline{5}$ or (5×1 or 5×10^{0})
- The LV of 3 is $\underline{30}$ (3×10 or 3×10^{1}) The LV of 0 is zero
- The LV of 4 is 4000 (4×1000 or 4×10^{3})
- In General LV at Nth position is $10^{\mathrm{N}-1}$

TRUE NOTATION

- Local Bit Values of pattern are added together to obtain the true whole number contained by the BYTE.

8	7	6	5	4	3	2	1
128	64	32	16	8	4	2	1 LV
2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}

- Zero (0) has a LV of zero at any bit position
- In General LV at Nth bit position is $2^{\mathrm{N}-1}$

EXAMPLE 1

- Consider the pattern 00000000 All the symbols are zero; each have local value zero and sum is 0 . Thus the pattern 00000000 represents the decimal number 0 (ZERO) in true notation.

EXCESS NOTATION

- This is one of the two ways to associate the Negative and Positive whole numbers to bit patterns.
- Consider three bit word for example:
- 000001010011

100101110111 are the 8 possible patterns. The pattern 100 equals to zero in this excess notation.

EXCESS NOTATION

- This number (100) is 4 in true notation.
- Thus 3 bit patterns would give Excess 4 numbers. The Excess is the true value of the pattern associated to the excess number zero ($100=4$)
- Excess 4 is denoted by E_{4}
- The Excess in E_{4} is 4 .

EXAMPLE 2

- 00000101

Gives the decimal number
$1 \times 2^{0}+1 \times 2^{2}+0 \ldots=1+4=5$ or $2^{0}+2^{2}=5$
-10010000
$=2^{4}+2^{7}=16+128=144$

EXAMPLE 3

- 11111111 is the largest whole number contained by BYTE in true notation.
Starting from right most bit (lowest bit)
$=1+2+4+8+16+32+64+128=255$
The numbers 0 to 255 are associated to 256 patterns in a BYTE
\qquad

Examples in E_{4}

Binary	True	E4	Binary	True	E4
000	0	-4	100	4	0
001	1	-3	101	5	1
010	2	-2	110	6	2
011	3	-1	111	7	3

- $\mathrm{E}_{4}=$ True -4.

EXCESS in a BYTE

- In 8 bits, 10000000 is the pattern associated to the number zero (0). Its true value is 128 . Therefore in a single byte Excess Notation is termed as E_{128}.
- The Excess is 128.
- $\mathrm{E}_{128}=$ True-128

EXCESS NOTATION

- Next Consider 4 bit patterns.
- 1000 denotes ZERO in excess notation and its true value is 8 .
- 4 bit patterns are thus denoted by E_{8}.
- Excess is 8 (true value of 1000)
- $\mathrm{E}_{8}=$ True-8

EXAMPLES in E_{128}

- $01001111(10000000)=128$

True value $=1+2+4+8+64=79$
The E_{128} value $=79-128=-49$

- 00000000

True Value $=0$
$\mathrm{E}_{128}=0-128=-128$ (the smallest possible number in a byte in excess notation)

EXAMPLES in 4 bits

- 1001 (4 bits $1000=8$ so E_{8})
- True Value $=1+8=9$
- $\mathrm{E}_{8}=9-8=1$
- Thus 1001 is 1 in Excess 8 notation.
- 0001
- True value =1
- $\mathrm{E}_{8}=1-8=-7$

EXAMPLES in E_{128}

- 11111111

True value $=255$
$\mathrm{E}_{128}=255-128=127$. The largest possible number in 8 bits in Excess Notation.
If there is a zero in the highest bit the number is -ve and positive otherwise.

GENERAL

- 87654321
- Highest Lowest
- The highest bit is also termed as the most significant bit as the lowest bit is called as the least significant bit.

EXAMPLES in 3 bits

* 101
- Local Value of the Highest Bit $=-4$
- Local Values of all other bits =1
- The Signed Number $=-4+1=-3$
* 011
- Zero in last bit indicates number is +ve ; its true value is signed value:
- $0+2+1=3$

SIGNED NOTATION

- Is another way of associating signed numbers to bit patterns.
- A ZERO (0) in the highest bit denotes non-negative number
- A ONE (1) in the highest bit denotes negative whole number.
- The local value of highest bit $=-(2)^{\mathrm{N}-1}$

EXAMPLES In 3 bits

* 011 is the largest +ve number
- Signed Value: $0+2+1=3$
* 100 is the smallest number
- Signed Value:-4
- Numbers range between - 4 and +3

RULES for Signed Notation

- For ZERO in the last bit the TRUE value of the number is its SIGNED VALUE as well.
- For 1 in the last bit, add the local values of all other bits to - (2) ${ }^{\mathrm{N}-1}$ to obtain negative number.
- Signed Value = -ve value of last bit $+\Sigma$ LV of all other bits

EXAMPLES in 4 bits

```
*0011 (is +ve Number)
- Signed Value = 3 = True Value
*1111 (is -ve Number)
- Signed Value: -8+(4+2+1) = -1
-1010
- Signed Value: - 8+2=-6
```


EXAMPLES in 8 bits

* 00011111

- Number is + ve and is $=16+8+4+2+1=31$
* 10011001
- $=-128+(16+8+1)=-103$
* 11111111
- $=-128+(64+32+16+8+4+2+1)=-1$
- -1 in any number of bits is the pattern containing 1 in all bits.

WHOLE NUMBER DATA TYPES

* BYTE
- 1 Byte storage, True Notation
- 00000000 is the smallest number

Value is 0

- 11111111 is the largest number

Value is 255

- Range of BYTE numbers is $(0-255)$

WHOLE NUMBER DATA TYPES

* INTEGER
- 2 Byte storage, SIGNED Notation
- 1000000000000000 is the smallest number and value is $\mathbf{- 3 2 7 6 8}$
- 0111111111111111 is the largest number and value is 32767
- Range of INTEGERS is $(-32768-+32767)$

WHOLE NUMBER DATA TYPES
* INTEGER
- 2 Byte storage, SIGNED Notation
1000000000000000 is the smallest
number and value is -32768
- 0111111111111111 is the largest
number and value is 32767
Range of INTEGERS is $(-32768-+32767)$

Applications

TRUE NOTATION

- True notation is used to calculate the

Values in Signed Notation as well as Excess Notation.

- It is the basic notation and applicable for all types of notations.

Applications
 SIGNED NOTATION

- This notation is used to calculate the Values of Integers and Long Data Types.
- It is meaningful for whole numbers stored in 2B (16b) and 4B (32b) storage.

Appicatage E CESS NOTATION

- This notation is used to calculate the EXPONENT of real data type.
- It is meaningful for 8 b and 11 b only.
- These are used to store the exponent of Single Precision and Double Precision Real numbers. (To be discussed later on).

