

BASIC UNIT OF STORAGE

- A CIRCUIT in ON or OFF State
- Two numbers (or symbols) can be associated to these two states.
- The numbers are 1 and 0; the binary numbers
- The unit is termed as BIT (abbreviation of BInary digiT)

- WHOLE NUMBERS may be associated to bit patterns according to one of three conventions:
- ***TRUE NOTATION**
- **SIGNED NOTATION**
- ***EXCESS NOTATION**

FUNDAMENTAL UNIT OF STORAGE

- 8 bits integrated to make a BYTE
- BYTE can store 256 different patterns consisting of 0s and 1s.
- 256 different numbers can be associated to these patterns.
- Storage exists of millions of Bytes

LOCAL VALUE

- Consider the decimal number 4035
- The local value of 5 is only <u>5</u> or (5x1 or 5x10⁰)
- The LV of 3 is <u>30</u> (3x10 or 3x 10¹) The LV of 0 is <u>zero</u>
- The LV of 4 is <u>4000</u> (4x 1000 or 4x10³)
- In General LV at Nth position is 10 N-1

	-	ΓR	UE	N)T	ΑΤΙ	NC	
• Loc	al Bi	t Va	lues	of pa	tterr	n are a	dded	
tog	ether	to c	obtai	n the	true	whole	e number	
cor	ntaine	ed by	/ the	BYT	Έ.			
8	7	6	5	4	3	2	1 bit	
128	64	32	16	8	4	2	1 LV	
27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	21	2 ⁰	

• Zero (0) has a LV of zero at any bit position

• In General LV at Nth bit position is 2^{N-1}

EXAMPLE 3

- 1 1 1 1 1 1 1 1 is the largest whole number contained by BYTE in true notation.
- Starting from right most bit (lowest bit)
- = 1+2+4+8+16+32+64+128=255
- The numbers 0 to 255 are associated to 256 patterns in a BYTE

EXAMPLE 1

Consider the pattern 0 0 0 0 0 0 0 0
 All the symbols are zero; each have local value zero and sum is 0. Thus the pattern 0 0 0 0 0 0 0 0 0 represents the decimal number 0 (ZERO) in true notation.

EXCESS NOTATION

- This is one of the two ways to associate the Negative and Positive whole numbers to bit patterns.
- Consider three bit word for example:
- 000 001 010 011 . <u>100</u> 101 110 111 are the 8 possible patterns. The pattern 100 equals to zero in this excess notation.

EXAMPLE 2

• 0000 0101

Gives the decimal number . $1x2^{0}+1x2^{2}+0$ =1 +4 = 5 or

2⁰+2²=5

• 10010000

= 2⁴+2⁷ = 16+128 = 144

EXCESS NOTATION

- This number (100) is 4 in true notation.
- Thus 3 bit patterns would give Excess 4 numbers. The Excess is the true value of the pattern associated to the excess number zero (1 0 0 = 4)
- Excess 4 is denoted by E₄
- The Excess in E_4 is 4.

12

Binary	True	E4	Binary	True	E4
000	0	-4	100	4	0
001	1	-3	101	5	1
010	2	-2	110	6	2
011	3	-1	111	7	3

EXCESS in a BYTE

- In 8 bits, 1000 0000 is the pattern associated to the number zero (0). Its true value is 128. Therefore in a single byte Excess Notation is termed as E_{128.}
- The Excess is 128.
- E₁₂₈=True-128

EXCESS NOTATION

- Next Consider 4 bit patterns.
- 1 0 0 0 denotes ZERO in excess notation and its true value is 8.
- 4 bit patterns are thus denoted by E₈.
- Excess is 8 (true value of 1 0 0 0)
- E₈=True-8

EXAMPLES in E₁₂₈

• 0 1 0 0 1 1 1 1 (1 0 0 0 0 0 0 0) =128 True value = 1+2+4+8+64 = 79The E₁₂₈ value = 79 - 128 = -49

- 0000 0000
- True Value = 0

E₁₂₈ = 0 -128= - 128 (the smallest possible number in a byte in excess notation)

17

EXAMPLES in 4 bits

- 1 0 0 1 (4 bits 1000 =8 so E₈)
- True Value = 1+8 = 9
- $E_8 = 9 8 = 1$
- Thus 1001 is 1 in Excess 8 notation.
- 0 0 0 1
- True value = 1
- E₈ = 1 8 = 7

EXAMPLES in E₁₂₈

• 1111 1111

True value = 255

- $E_{128} = 255 128 = 127$. The largest possible number in 8 bits in Excess Notation.
- If there is a zero in the highest bit the number is -ve and positive otherwise.

22

23

GENERAL

- ,87654321,
- Highest
- The highest bit is also termed as the most significant bit as the lowest bit is called as the least significant bit.

Lowest

19

EXAMPLES in 3 bits 101 Local Value of the Highest Bit = -4 Local Values of all other bits = 1 The Signed Number = -4 + 1 = -3 011 Zero in last bit indicates number is +ve; its true value is signed value: 0+2+1=3

SIGNED NOTATION

- Is another way of associating signed numbers to bit patterns.
- A ZERO (0) in the highest bit denotes non-negative number
- A ONE (1) in the highest bit denotes negative whole number.
- The local value of highest bit = -(2) N-1

EXAMPLES In 3 bits

- Signed Value: 0 + 2 + 1 = 3
- ✤ 1 0 0 is the smallest number
- Signed Value: 4
- Numbers range between 4 and + 3

RULES for Signed Notation

- For ZERO in the last bit the TRUE value of
 - the number is its SIGNED VALUE as well.
- For 1 in the last bit, add the local values of all other bits to – (2)^{N-1} to obtain negative number.
- Signed Value = -ve value of last bit + Σ LV of all other bits

EXAMPLES in 4 bits * 0 0 1 1 (is +ve Number) • Signed Value = 3 = True Value * 1 1 1 1 (is -ve Number) • Signed Value: -8+(4+2+1) = -1 • 1 0 1 0 • Signed Value: -8 + 2 = -6

EXAMPLES in 8 bits

- *00011111
- Number is +ve and is = 16+8+4+2+1= 31
- *10011001
- = -128+(16+8+1) = 103
- *11111111
- = -128+(64+32+16+8+4+2+1) = -1
- -1 in any number of bits is the pattern containing 1 in all bits.

WHOLE NUMBER DATA TYPES

SYTE

- 1 Byte storage, True Notation
- 0000000 is the smallest number Value is 0
- 1 1 1 1 1 1 1 is the largest number
 Value is 255
- Range of BYTE numbers is (0 255)

Applications TRUE NOTATION

- True notation is used to calculate the Values in Signed Notation as well as Excess Notation.
- It is the basic notation and applicable for all types of notations.

WHOLE NUMBER DATA TYPES

✤ INTEGER

- · 2 Byte storage, SIGNED Notation
- 1000 0000 0000 0000 is the smallest number and value is -32768
- 0111111111111111 is the largest number and value is 32767
- Range of INTEGERS is (32768 +32767)

Applications SIGNED NOTATION

- This notation is used to calculate the Values of Integers and Long Data Types.
- It is meaningful for whole numbers stored in 2B (16b) and 4B (32b) storage.

Applications EXCESS NOTATION

- This notation is used to calculate the EXPONENT of real data type.
- It is meaningful for 8b and 11b only.
- These are used to store the exponent of Single Precision and Double Precision Real numbers. (To be discussed later on).

31

