CONVERSION RULES

- The decimal whole number is consecutively divided by 2 and remainder is noted at each turn.
- The division is terminated when quotient equals to 0 .
- Write the first remainder in $1^{\text {st }}$ bit ,the $2^{\text {nd }}$ in $2^{\text {nd }}$ bit, continue until the last remainder is exhausted. Pad the remaining bits with zeros.

ONE's Complement

* If 0's and 1's in a pattern are changed with 1's and 0 's respectively, the number obtained is called 1's complement.
$01011000 \quad$ Original
10100111 1's Complement
* If 1 is added to 1 's complement, the result is a number called 2's complement.

| 10100111 | 1's Complement |
| ---: | ---: | ---: |
| 10101000 | 2's Complement |

ONE's Complement

1's complement is obtained by inverting the given pattern.

Inversion means replacing 0 by 1 and 1 by 0 .

INTEGER NUMBER -41

Write the number +41
0000000000101001
1111111111010110 write 1's C
1+ Get 2's C
$1111111111010111 \Rightarrow-41$

TWO's Complement

Adding 1 to 1 's complement generates the 2's complement.

* The 2's complement of a +ve number (INTEGER or LONG) gives its NEGATIVE counterpart.

INTEGER NUMBER -650

Write the number +650 :
0000001010001010
1111110101110101 write 1's C
1+ Get 2's C
$1111110101110110 \Rightarrow-650$

CONVERSION of -ve Numbers

* Negative Decimal numbers are converted to Binary numbers using 2's complement :

1. Absolute value of negative number is obtained and converted to binary notation.
2. 1's complement is obtained.
3. 1 is added to obtain 2's complement.

* The resulting binary number is equivalent to the given negative number.

INTEGER NUMBER -1

First write the number +1
0000000000000001
1111111111111110 write 1's C
1+ Get 2's C
$1111111111111111 \Rightarrow-1$

