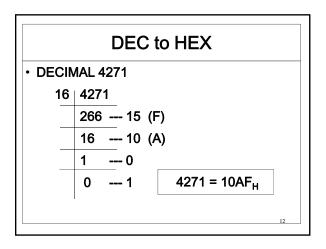

#### HEXADECIMAL Number System


- The numbers with base 16 are called HEXADECIMAL Numbers.
- The sixteen letters 0, 1, 2, ...9 plus A, B, C, D, E and F make the basic set of 16 symbols.
- The dec number 16 is denoted by pattern 10
- The rules for conversion are same as for binary numbers, if 2 is replaced by 16.











### Usage

- If image of memory is printed it will consist of a long string of 0s and 1s.
- It would be difficult to visualize the image.
- · It would be difficult to interpret the image.
- Hence memory is printed either in OCTAL or HEXADECIMAL system of numbers.

### **PRINT IN OCTAL**

- 011 111 001 010 110 100 000 101
- Will be written as 37 12 64 05 starting from right. (24 bits reduced to 8 patterns)
- 0 010 011 110 101 111 (16 bit pattern) gives 02 36 57 in Octal notation. Here 16 bits are reduced to 6 patterns.

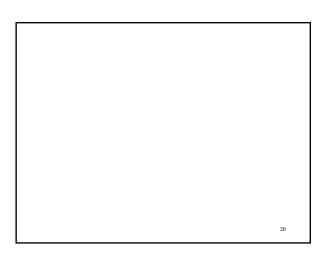
## **PRINT IN OCTAL**

- Historically first image other than binary was printed in Octal notation.
- It may be noted that three bit patterns give a value ranging between 0—7.
- Thus three bits are combined together (right to left) and an equivalent number is obtained in Octal system from each 3 bit pattern.

# PRINT IN HEXADECIMAL

- Soon it was realized that octal was not a proper system for taking a dump of memory.
- If 4 bits are combined the dec value will range between 0-15. (0-F)
- 4 bit combinations reduce the memory image to ¼ in size.

| BIN to OCT      |       |    |  |  |
|-----------------|-------|----|--|--|
| Note the follow | ving: |    |  |  |
| 000             | = 0   |    |  |  |
| 001             | = 1   |    |  |  |
| 010             | = 2   |    |  |  |
| 011             | = 3   |    |  |  |
| 100             | = 4   |    |  |  |
| 101             | = 5   |    |  |  |
| 110             | = 6   |    |  |  |
| 111             | = 7   |    |  |  |
|                 |       | 15 |  |  |


| BIN to HEX |             |                 |    |  |
|------------|-------------|-----------------|----|--|
| • Note t   | he followin | g:              |    |  |
| 0000       | = 0         | 1000 = 8        |    |  |
| 0001       | = 1         | 1001 = 9        |    |  |
| 0010       | = 2         | 1010 = A        |    |  |
| 0011       | = 3         | 1011 = B        |    |  |
| 0100       | = 4         | 1100 = C        |    |  |
| 0101       | = 5         | 1101 = D        |    |  |
| 0110       | = 6         | 1110 = E        |    |  |
| 0111       | = 7         | 1111 = F        |    |  |
|            | - /         | 1111 <b>-</b> F | 18 |  |

# BIN to HEX

- Watch the following memory dump in binary:

19

- The 8 B pattern is quite difficult to visualize
- Note the HEX equivalent :
- 09 6F 1F 55 72 D0 E5 A1

