CE 150 COMPUTER PROGRAMMING

1

EXPRESSIONS & OPERATORS

EXPRESSIONS

 An expression can be a string or numeric constant, a variable, or a single (only one) value obtained by combining constants, variables, and other expressions with operators.

ARITHMETIC OPERATORS

- These operators perform arithmetic operation.
- There are seven operators provided by BASIC.

OPERATORS

 Operators perform mathematical or logical operations on values. The operators provided by BASIC can be divided into five categories:

ARITHMETIC OPERATORS

OPERATOR	OPERATION	EXAMPLE		
^	Exponentiation	X^Y XY		
-	Negation	-X		
*	Multiplication	X*Y XxY		
/	Division	X/Y X%Y		
١	Integer Division	X\Y		
MOD	Modulo Arithmetic	X MOD Y		
+,-	Addition, Subtraction	X+Y or X-Y		

Example

ARITHMETIC OPERATORS

- The order in which the operators are listed in Table is order of precedence.
- Although most of these operations probably look familiar to you, two of them may seem a bit unfamiliar:
- Integer Division & Modulo Arithmetic

MOD

- Modulo arithmetic is denoted by MOD. It gives the integer value that is the remainder of an integer division:
- A=7 MOD 4 will give A=3
- B=25.68 MOD 6.88 gives B=5
- (remember BASIC rounds when converting to Integer)

\ Integer Division

- Integer division is denoted by backslash. The operands are rounded to long Integers (if within the range) before the division is performed.
- The quotient is then truncated to an integer.

RELATIONAL Operators

- Relational operators compare two values. The values may be either both numeric, or both string.
- The result of comparison is either TRUE (-1) or FALSE(0).
- This results is then used in making decisions regarding flow of program.

Integer Division Example

- A=10\4 gives 2.5 which then truncates to 2. Thus A=2
- B=25.52\6.99 The operation is performed as follows:
- 26\7 =3.7 → 3

1

Thus B=3

OPERATOR RELATION TESTED EVAMPLE

OPERATOR	RELATION TESTED	EXAMPLE
=	Equality (Equal TO)	A=B
<> or ><	Inequality (Not =)	A<>B
<	Less Than	X < Y
>	Greater Than	A > B
<= or =<	Not Greater Than	$A \leq X$
>= or =>	Not Less Than	Z => B
		12

ARITH and RELAT Operators

- When arithmetic operators are combined with relational operators in one expression, the arithmetic is performed first:
- X+Y < (T+1)/Z
- First X+Y and (T+1)/Z are obtained and then comparison is made.

STRING COMPARISON

- "AA" < "AB"
- "ABCX"="ABCX"
- "ABCX" < "ABCX "
- "ABCx" > "ABCXYZabc"
- "kg" > "KG"
- "718" > "12345678"
- All the above expressions give TRUE.

LOGICAL Operators

- Logical operators perform logical or Boolean operations on numeric values.
- Just as the relational operators are used to make decisions regarding program flow, logical operators are usually used to connect two or more relations and return a true or false value to be used in a decision.

STRING COMPARISON

- The two strings are compared by taking one character from each and comparing the ASCII codes.
- IF all the ASCII codes are same the two strings are equal.
- Otherwise as soon as the ASCII codes differ, the string with the lower code is less than the other.
- If during comparison the end of one string is reached, it is less than other.

LOGICAL Operators

The six logical operators are

- NOT (Complement)
- AND (Conjunction)
- OR (Disjunction) (Inclusive OR)
- XOR (Exclusive OR)
- EQV (Equivalence)
- IMP (Implication)

LOGICAL Operators								
X	Y	NOT X	X	X	X	X	X	
			AND Y	Y	Y	EQV Y	Y	
Т	Т	F	Т	Т	F	Т	Т	
Т	F	F	F	Т	Т	F	F	
F	Т	Т	F	Т	Т	F	Т	
F	F	Т	F	F	F	Т	Т	

LOGICAL Operators

- A=63 AND 16
- 63= 0000 0000 0111 1111
- 16= 0000 0000 0000 0100
- 16= 0000 0000 0000 0100
- Thus A is set to 16.

LOGICAL Operators

- IF HE > 60 and SHE < 20 will return a true if value of HE is greater than 60 and that of SHE is less than 20.
- IF A > 4 OR B < 0 will yield true if either A is greater than 4, or B is less than zero, or both.
- NOT (P=-1) will return true if P <> -1

LOGICAL Operators

- A=63 OR 16
- 63= 0000 0000 0111 1111
- 16= 0000 0000 0000 0100
- 63= 0000 0000 0111 1111
- Thus A is set to 63.

LOGICAL Operators

 The operands of logical operators are converted to integers or long (in the range). If they are out of range of long an error occurs. Otherwise a bit wise comparison is made and 1 is considered true and 0 as false.

LOGICAL Operators

- C= 4 OR 2
- 4= 0000 0000 0000 0100
- 2= 0000 0000 0000 0010
- 6= 0000 0000 0000 0110
- Thus C=6

LOGICAL Operators

- 207 IMP 120 gives -136
- 0000 0000 1100 1111

IMP

- 0000 0000 0111 1000
- 1111 1111 0111 1000 = -136

Operators ORDER OF EXECUTION • FUNCTION are evaluated first. • Arithmetic operations are evaluated next in the order (from left to right) 1. ^ 2. - (Negation) 3. */ 4. \ 5. MOD 6. + -

0. + -

FUNCTIONAL Operators

- A function is used like a variable in an expression o call a predetermined operation that is to be performed on one or more operands.
- SIN, LOG, SQR are examples
- BASIC language provides a large number of functions like the above three.

ORDER OF EXECUTION

- Relational operations are done next. L-R
- Logical operations are done last in the order:
- 1. NOT
- 2. AND
- 3. OR
- 4. XOR
- 5. EQV
- 6. IMP

ORDER OF EXECUTION

- The numeric operators have been discussed in 4 categories and in each category the precedence of operations within each category was indicated in the discussion of the category.
- The summary is given next:

ORDER OF EXECUTION

- Operations at the same level in the list are done in left to right order.
- To change the order of precedence use the parenthesis.
- Operations within parentheses are performed first.
- Inside the parentheses the usual order of operations is maintained.

EXAMPL OR	DER OF EXECUTION	
• X+2Y	→ X+Y*2	
• $X + \frac{Y}{7}$	→ X+Y/Z	
• <u>XY</u>	→ X*Y/Z	
• $\frac{X+Y}{2}$	→ (X+Y)/Z	
• (x ²)*	→ X^2^Y	
• x ^{x^x}	\rightarrow X^(Y^Z)	
		37

- Two consecutive operators must be separated by parentheses.
- Exceptions to this rule are * -, * +, ^ -, and ^ +.
- X*-Y is valid as X*(-Y) and
- X⁻Z is also valid as X^(-Z)