
COMPUTER PROGRAMMING

DR. USMAN AKMAL

CONTROLLING EXECUTION WITH CONTROL STRUCTURES

DEPARTMENT OF CIVIL ENGINEERINGUNIVERSITY OF ENGINEERING AND TECHNOLOGY, LAHORE



CONTENTS

2

 CONTROL STRUCTURES
 Decision Structures
 Loops

 DECISION STRUCTURES
 IF Statement
 IF ELSE Statement
 IF ELSEIF ELSE Statement
 NESTED IF Statement
 SELECT CASE Statement



CONTROL STRUCTURES

3

A control structure allows the programmer to determine whether or not specific statements are executed.
QBasic has two control types:
 Decision structures
 Loops



DECISION STRUCTURES 

4

Decision structures are used to make comparisons in order to decide if certain statements and actions are to be executed or taken.
One form is the IF Statement Block which is a single-alternative decision. It either does something or it does nothing at all. 



IF STATEMENT BOLOCK

5

The form of the IF Statement Bolock is as follows:
IF (expression) THEN

-----------
-----------
-----------
-----------

END IFThe central statements will only be executed if (expression) is true; otherwise, execution moves on to the next executable statement. 



IF ELSE STATEMENT 

6

Another form of a decision structure is the IF ELSE STATEMENT, which is referred to as a double-alternative decision structure.The form of the IF ELSE statement is as follows:
IF (expression 1) THEN

-----------
ELSE

-----------
END IF

First action is taken if the expression 1 is true and another action is taken if the expression is false.



IF ELSE STATEMENT [EXAMPLE]

7

CLS
DIM number AS INTEGER
INPUT “Enter any Number = “, number

IF number >= 100 THEN
PRINT "This is a high value."

ELSE
PRINT "This is a low value."

END IF



IF ELSEIF ELSE STATEMENT 

8

If you want to check for one of several conditions, you can add ELSEIF clauses into the body of the IF ELSE STATEMENT. This type of decision structure will always perform some action. The form is as follows:
IF expression1 THEN

stmtT1
ELSEIF expression2 THEN

stmtT2
ELSEIF expression3 THEN

stmtT3
ELSE

stmtF
END IF



IF ELSEIF ELSE STATEMENT [EXAMPLE]

9

CLS
DIM score AS INTEGER
INPUT “Enter Student Marks = “, score

IF score >= 90 THEN
PRINT "Grade = A"

ELSEIF score >= 80 THEN
PRINT "Grade = B"

ELSEIF score >= 70 THEN
PRINT "Grade = C"

ELSEIF score >= 60 THEN
PRINT "Grade = D"

ELSE
PRINT "Grade = F"

END IF



NESTED IF STATEMENTS

10

You can also check for several conditions by using nested IF statements, which are IF statements used in the body of IF statements. The form for nested IFs is as follows: IF expression1 THEN
IF expression1A THEN

stmtT1A
ELSE

stmtF1A
END IF

ELSE
IF expression1B THEN

stmtT1B
ELSE

stmtF1B
END IF

END IF



SELECT CASE STATEMENT

11

 A SELECT CASE statement is another control structure which allows an action to be selected from a list of alternatives.
 The SELECT CASE statement uses various "cases", individually named CASE, which include one or more statements to be executed if the specified value of the expression equals the value of the "case".
 There is also a CASE ELSE clause which is optional but is useful for validating user input.



SELECT CASE STATEMENT

12

 The SELECT CASE statement is particularly efficient when menus are included in a program.
 A menu is a list of options that is displayed to the user with each option having an action to take place if it is selected.
 When the user makes a choice, the choice can be evaluated easily with a SELECT CASE statement.



SELECT CASE STATEMENT

13

The form of a SELECT CASE statement is as follows:
SELECT CASE testExpression

CASE expression1
stmt1

CASE expression2
stmt2

CASE expression3
stmt3

CASE ELSE
stmt(N)

END SELECT



SELECT CASE STATEMENT [EXAMPLE]

14

CLS
PRINT “1. Area of Rectangle” ‘Option 1
PRINT “2. Area of Circle” ‘Option 2
PRINT “3. Area of Triangle” ‘Option 3
INPUT "Enter Option number(1 - 3): ", OptNum
SELECT CASE OptNum

CASE 1
PRINT “Area of Rectangle"

CASE 2
PRINT “Area of Circle"

CASE 3
PRINT “Area of Triangle"

CASE ELSE
PRINT "You did not specify an index number 

from 1 - 3!"
END SELECT



SELECT CASE STATEMENT [EXAMPLE]

15

When checking for a range of values while using a SELECT CASE statement, you must use the keyword IS when using a relational operator to make a comparison, and you must use the keyword TO forchecking the ranges.
CLS
INPUT "Enter the Test Marks: ", TestMarks%
SELECT CASE TestMarks%

CASE IS >= 90
PRINT "Your grade is an A!"

CASE 80 TO 89
PRINT "Your grade is a B!"

CASE 70 TO 79
PRINT "Your grade is a C!"

CASE 60 TO 69
PRINT "Your grade is a D!"

CASE IS <= 59
PRINT "Your grade is a F!"

END SELECT



CONTROL STRUCTURES [LOOPS]

16

 WHILE...WEND LOOP
 DO LOOP
 FOR...NEXT LOOP



LOOPS

17

Loops allow a specified group of statements to be executed a certain number of times. Because the exact same code is being executed a certain number of times, we call this "looping" or "iteration" in programming. 
QBasic offers two type of looping statements:
 WHILE...WEND
 DO...LOOP
 FOR...NEXT



WHILE...WEND LOOP

18

The WHILE...WEND command continues a loop until a specified expression is false.
WHILE (expression/condition)

-----------
-----------
-----------
-----------

WEND



WHILE...WEND LOOP [EXAMPLE]

19

CLS
x = 10
WHILE x < 15

PRINT x
x = x + 1

WEND



DO...LOOP

20

DO...LOOP is same as WHILE...WEND, except it has following two advantages.i. Loop until an expression is trueii. Loop at least one time regardless of whether the expression is true or not.
DO…LOOP continues "while" the expression is true or "until" the expression is true, using the WHILE and UNTIL statements, respectively.



DO...LOOP STRUCTURE USING WHILE KEYWORD

21

DO WHILE (expression/condition)
-----------
-----------

LOOP

DO 
-----------
-----------

LOOP WHILE (expression/condition)



DO...LOOP STRUCTURE USING WHILE KEYWORD

22

[EXAMPE 1] x = 10
DO WHILE x < 15

PRINT x
x = x + 1

LOOP
[EXAMPE 2] x = 10

DO
PRINT x
x = x + 1

LOOP WHILE x < 15



DO...LOOP STRUCTURE USING UNTIL KEYWORD

23

DO UNTIL (expression/condition)
-----------
-----------

LOOP

DO 
-----------
-----------

LOOP UNTIL (expression/condition)



DO...LOOP STRUCTURE USING UNTIL KEYWORD

24

[EXAMPE 1] x = 10
DO UNTIL x = 15

PRINT x
x = x + 1

LOOP
[EXAMPE 2] x = 10

DO
PRINT x
x = x + 1

LOOP UNTIL x = 15



FOR...NEXT LOOP

25

A FOR...NEXT loop is generally used as a counter loop when you know exactly how many times you need to execute the loop. The form of a FOR...NEXT loop is as follows:
FOR <Variable> = <startVal> TO <EndVal> [STEP <increment>]
-----------
-----------
NEXT <variable name>The Variable is any variable used as a counter. It will be first initialized to the specified StartVal. The EndVal marks the condition when the loop should end "looping". The optional STEP value specifies how large to increase(+ve)/decrease(-ve) the loop control variable. If not provided, the default STEP value is 1.



FOR...NEXT LOOP [EXAMPLES]

26

CLS
x = 10
y = 1
FOR I = 1 TO 5

PRINT x
x = x + y

NEXT I

CLS
FOR x = 1 TO 10 STEP 2

PRINT x
NEXT x 

CLS
FOR x = 100 TO 0 STEP -5

PRINT x,
NEXT x 

[EXAMPE 1] [EXAMPE 2]

[EXAMPE 3]



STOPPING LOOPS

27

To stop a loop prematurely, use the EXIT command, followed by either FOR or DO. 
FOR x = 1 TO 5

PRINT x
IF x = 3 THEN EXIT FOR

NEXT x 

NOTE: This command only works with the DO...LOOP and FOR...NEXT LOOP, not with WHILE...WEND.



2828

END OF LECTURE


