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Stresses and Deflections in Rigid Pavements

STRESSES DUE TO CURLING

During the day, when the temperature on the top of the slab
IS greater than that at the bottom, the top tends to expand
with respect to the neutral axis, while the bottom tends to
contract. However, the weight of the slab restrains it from
expansion and contraction; thus, compressive stresses are
induced at the top, tensile stresses at the bottom.

At night, when the temperature on the top of the slab is
lower than that at the bottom, the top tends to contract with
respect to the bottom; thus, tensile stresses are induced at
the top and compressive stresses at the bottom.
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Stresses and Deflections in Rigid Pavements

STRESSES DUE TO CURLING

Another explanation of curling stress can be made in terms
of the theory of a plate on a Winkler, or liquid, foundation.
A Winkler foundation is characterized by a series of springs
attached to the plate, as shown in Figure.
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Stresses and Deflections in Rigid Pavements

STRESSES DUE TO CURLING

When the temperature on the top is greater than that at the
bottom, the top is longer than the bottom and the slab curls
downward. The springs at the outside edge are in
compression and push the slab up, while the springs in the
interior are in tension and pull the slab down. As a result,
the top of the slab is in compression and the bottom is in
tension.
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(a) Downward Curling

~ Pavement Analysis and Design




Stresses and Deflections in Rigid Pavements

STRESSES DUE TO CURLING

When the temperature on the top is lower than that at the
bottom, the slab curls up-ward. The exterior springs pull
the slab down while the interior springs push the slab up,
thus resulting in tension at the top and compression at the
bottom.
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Stresses and Deflections in Rigid Pavements

Bending of Infinite Plate

The difference between a beam and a plate is that the beam
Is stressed in only one direction, the plate in two directions.
For stresses in two directions, the strain ¢, in the x direction
can be determined by the generalized Hooke's law,

in which E is the elastic modulus of concrete. The first term
on the right side of Eg.1 indicates the strain in the x
direction caused by stress in the x direction; the second
term indicates the strain in the x direction caused by stress
in the y direction.
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Stresses and Deflections in Rigid Pavements

Bending of Infinite Plate
Similarly,

When the plate is bent in the x direction, ¢, should be equal
to 0 because the plate is so wide and well restrained that no
strain should ever occur unless near the very edge. Setting
Eq.2 to 0 yields:

T Eq.3
Substituting Eq.3 into Eg.1 and solving for &, gives
Ee, i, Eq.4
o, =
1~ ?
Eqg.4 indicates the stress in the bending direction, Eq.3 the
stress in the direction perpendicular to bending. .
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Stresses and Deflections in Rigid Pavements
Bending of Infinite Plate

When bending occurs in both the x and vy
directions, as Is the case for temperature curling,
the stresses In both directions must be
superimposed to obtain the total stress.

The maximum stress in an infinite slab due to
temperature curling can be obtained by assuming
that the slab is completely restrained in both X
and y directions.

Pavement Analysis and Design



Stresses and Deflections in Rigid Pavements
Bending of Infinite Plate

Neutral Axis 7/
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Stresses and Deflections in Rigid Pavements

Bending of Infinite Plate

Let At be the temperature differential between the top and
the bottom of the slab and «, be the coefficient of thermal
expansion of concrete. If the slab is free to move and the
temperature at the top is greater than that at the bottom,
the top will expand by a strain of a,4t/2 and the bottom will
contract by the same strain, as shown in Figure. If the slab
Is completely restrained and prevented from moving, a
compressive strain will result at the top and a tensile strain
at the bottom. The maximum strain is
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Stresses and Deflections in Rigid Pavements

Bending of Infinite Plate
From EQ.4, the stress in the x direction due to bending in

the x direction is

Ea At
= ireeetessssscencs Eq.6
2(1 — %) a

Uy

Because EQ.6 is also the stress in the y direction due to
bending in the y direction, from Eq.3, the stress in the X
direction due to bending in the y direction is

_ vEaAt
By = Z(I_ _ ,Hl} .................. Eq7
The total stress is the sum of Eqgs.6 and 7:
. Ea,At ' CEa Al eeeennennnn. Eq.8
T - T T A ) 1
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Stresses and Deflections in Rigid Pavements
Bending of Infinite Plate
The preceding analysis 1s based on the
assumption that the temperature distribution is
linear throughout the depth of the slab. This is an
approximation, because the actual temperature
distribution is nonlinear.
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Stresses and Deflections in Rigid Pavements
Curling Stresses in Finite Slab
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Stresses and Deflections in Rigid Pavements

Curling Stresses in Finite Slab
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Stresses and Deflections in Rigid Pavements

Curling Stresses in Finite Slab

Figure shows a finite slab with lengths L, in the x direction
and L, in the y direction. The total stress in the x direction
can be expressed as:

CxEﬂ't&I Cvaat&I Eﬂlﬂf

Oy = 2(1 _ vz] T 2(1 _ vz} = 2(1 . vg) (Cl‘ + M}) ......... qua

in which C, and C, are correction factors for a finite slab.
The first term in Eq.9a is the stress due to bending in the x
direction and the second term is the stress due to bending in
the y direction. Similarly, the stress in the y direction is

Fo, At
ﬂ'l —
Y201 — )

(Cy + VEy)
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Stresses and Deflections in Rigid Pavements

Curling Stresses in Finite Slab

Using Westergaard's analysis, Bradbury (1938) developed a
simple chart for determining C, and C,, as shown in Figure.
The correction factor C, depends on L, /e and the correction
factor C,depends on L, /e where e is the radius of relative
stiffness, defined as:

Eh3 0.25
= | )
12(1 — v?)k

in which E is the modulus of elasticity of concrete, h is the
thickness of the slab, » is Poisson ratio of concrete, and Kk is
the modulus of subgrade reaction.

16
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Stresses and Deflections in Rigid Pavements
Curling Stresses in Finite Slab
Here modulus of 4 x 10° psi and a Poisson ratio of 0.15 are
assumed for the concrete. Equation 9 gives the maximum interior
stress at the center of a slab. The edge stress at the midspan of the
slab can be determined by:

_ CEa,At
- 2 ooooooooo

ag
in which o may be o, or g, depending on whether C is C, or C,

Note that Eq.11 is the same as EQ.9 when the Poisson ratio at the
edge is taken as 0.

It can be seen from Figure that the correction factor C increases as
the ratio L/e increases.
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Stresses and Deflections in Rigid Pavements
Curling Stresses in Finite Slab-Numerical Problem
Figure shows a concrete slab, 25 ft long, 12 ft wide and 8 in. thick,
subjected to a temperature differential of 20°F. Assuming that k =
200 pci and a, = 5x10° in./in./°F, determine the maximum curling
stress in the interior and at the edge of the slab.

4 q—-::-.{-a',=?
) ; a, =5 x 107%F
-— k =200 pei
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Stresses and Deflections in Rigid Pavements
Curling Stresses in Finite Slab-Numerical Problem

Eh3 0.25
= | )
12(1 = vz)k

_ CyEaqAt N CyvEaAt EajAt
21 -8 21 -7 2(1 - ?)

(Cy + oC))
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Stresses and Deflections in Rigid Pavements
Curling Stresses in Finite Slab-Numerical Problem
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Stresses and Deflections in Rigid Pavements
Curling Stresses in Finite Slab-Temperature Differentials

Curling stresses in concrete pavements vary with
the temperature differentials between the top and
bottom of a slab.

Unless actual field measurements are made, it Is
reasonable to assume a maximum temperature
gradient of 2.5 to 3.5°F per inch of slab (0.055 to
0.077°C/mm) during the day and about half the
above values at night.

21
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Stresses and Deflections in Rigid Pavements

Curling Stresses in Finite Slab-Combined Stresses

Even though curling stresses can be quite large and can cause
concrete to crack when combined with loading stresses, they are
usually not considered in the thickness design for the following
reasons:

1. Joints and steel are used to relieve and take care of curling
stresses. Curling stresses are relieved when the concrete cracks.
Minute cracks will not affect the load-carrying capacity of
pavements as long as the load transfer across cracks can be
maintained.

2. When the fatigue principle is used for design, it is not practical
to combine loading and curling stresses. A pavement might be
subjected to millions of load repetitions during the design period,
but the number of stress reversals due to curling is quite limited.
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Stresses and Deflections in Rigid Pavements

Curling Stresses in Finite Slab-Combined Stresses

3. Curling stresses may be added to or subtracted from
loading stresses to obtain the combined stresses. If the
design is governed by the edge stress, curling stresses should
be added to loading stresses during the day but subtracted
from the loading stresses at night. Due to this compensative
effect and the fact that a large number of heavy trucks are
driven at night, it may not be critical if curling stresses are
ignored.
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Stresses and Deflections in Rigid Pavements

Stresses and Deflections due to Loading

Three methods can be used to determine the stresses and
deflections in concrete pavements:

closed-form formulas, influence charts and finite-element
computer programs.

The formulas originally developed by Westergaard can be applied
only to a single-wheel load with a circular, semicircular, elliptical
or semielliptical contact area.

The influence charts developed by Pickett and Ray (1951) can be
applied to multiple-wheel loads of any configuration. Both
methods are applicable only to a large slab on a liquid foundation.
If the loads are applied to multiple slabs on a liquid, solid or layer
foundation with load transfer across the joints, the finite-element
method should be used.

24
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Stresses and Deflections in Rigid Pavements
Stresses and Deflections due to Loading
Closed-Form Formulas

These formulas are applicable only to a very large
slab with a single-wheel load applied near the
corner, in the interior of a slab at a considerable
distance from any edge and near the edge far
from any corner.

25
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Stresses and Deflections in Rigid Pavements
Stresses and Deflections due to Loading
Closed-Form Formulas-Corner Loading

Plan view

v

(a) Concentrated Load
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Stresses and Deflections in Rigid Pavements
Stresses and Deflections due to Loading
Closed-Form Formulas-Corner Loading
The Goldbeck (1919) and Older (1924) formula is the
earliest one for use in concrete pavement design.

The formula is based on a concentrated load P applied at
the slab corner, as shown in Figure.

When a load is applied at the corner, the stress in the slab is
symmetrical with respect to the diagonal.

For a cross section at a distance x from the corner, the
bending moment is Px and the width of section is 2x.

27
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Stresses and Deflections in Rigid Pavements

Stresses and Deflections due to Loading

Closed-Form Formulas-Corner Loading-Concentrated Load
When the subgrade support is neglected and the slab is considered
as a cantilever beam, the tensile stress on top of the slab is:

Px 3P
u’ e =
Colem K

in which o, is the stress due to corner loading, P is the
concentrated load and h is the thickness of the slab. Note that o,
does not depend on x. In other words, every cross section, no
matter how far from the corner, will have the same stress. If the
load is really a concentrated load applied at the very corner, above
Eqg. is an exact solution, because, at a cross section near to the load,
with x approaching 0, the subgrade reaction is very small and can
be neglected.
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Stresses and Deflections in Rigid Pavements
Stresses and Deflections due to Loading
Closed-Form Formulas-Corner Loading-Circular Load

a : \'\
Plan view @ 3 {':P

(b) Circular Load
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Stresses and Deflections in Rigid Pavements
Stresses and Deflections due to Loading
Closed-Form Formulas-Corner Loading-Circular Load
Figure shows a circular load applied near the corner of a slab.
Because the section of maximum stress is not near the corner, the
total subgrade reactive force is quite large and cannot be
neglected. Westergaard (1926) applied a method of successive
approximations and obtained the formulas

| (:TVE)‘”‘-I
¢ ]
P a2
A, = ,,[H—uz%( )J
K€ {

in which 4 is the corner deflection, e is the radius of relative
stiffness, a is the contact radius and k is the modulus of subgrade
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Stresses and Deflections in Rigid Pavements
Stresses and Deflections due to Loading
Closed-Form Formulas-Corner Loading-Circular Load

Westergaard also found that the maximum
moment occurs at a distance of 2.38Vae from the
corner.

For a concentrated load with a=0, Eqs.

o’ = —
C
e

1P |-1 ~ (iﬂ{i)“'{q
L € J

~ Px 3P
(20 )R K

¢

are identical.
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Stresses and Deflections in Rigid Pavements
Stresses and Deflections due to Loading
Closed-Form Formulas-Corner Loading-Circular Load
loannides et al. (1985) applied the finite-element method to
evaluate Westergaard's solutions. They suggested the use of
the relationships: T (-C)m}

F. = —= | -
i L

£.

K, =2 1205 - n.aq(")]
ke* | ¢

in which c is the side length of a square contact area. They found
that the maximum moment occurs at a distance of 1.80c032 g0-59
from the corner. If a load is applied over a circular area, the value
of ¢ must be selected so that the square and the circle have the
same contact area: c=1.772a
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Stresses and Deflections in Rigid Pavements

Stresses and Deflections due to Loading
Closed-Form Formulas-Corner Loading-Circular Load-Numerical Problem

Figure shows a concrete slab subjected to a corner loading.
Given k=100 pci, h=10 in.,, a = 6 in. and P=10,000Ib,
determine the maximum stress and deflection due to corner

loading by Westergaard formula and loannides et al.
formula.

10,000 1b

¢ SV =7
( () ]a=>
{ h = I.Uiﬂ. \<__./’

! k = 100 pei a=6in.

~
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Stresses and Deflections in Rigid Pavements

Stresses and Deflections due to Loading
Closed-Form Formulas-Corner Loading-Circular Load-Numerical Problem

Westergaard formula __3r |F1 ~ (E\{E)nﬂ
C o ¢ ]
3 Ek3 JDES
el ()

loannides et al. formula c=1.772a

B 1—!_:[[ - (E)ﬂ.?z:[
Te ” W f

P | B (:r)]
A= 11205 — 060f €
¢~ 72| ¢
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Stresses and Deflections in Rigid Pavements
Stresses and Deflections due to Loading
Closed-Form Formulas-Interior Loading-Circular Load
The earliest formula developed by Westergaard (1926) for
the stress in the interior of a slab under a circular loaded
area of radius a is:
3{1 + v }

Ewh"‘ “(In

+ 0.6159)

a; =

b

in which e is the radius of relative stiffness and

b=a whena = 1.724h
bh=v16a2 + 12 -~ 0675h whena < 1.724h
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Stresses and Deflections in Rigid Pavements
Stresses and Deflections due to Loading
Closed-Form Formulas-Interior Loading-Circular Load
For a Poisson ratio of 0.15 and in terms of base-10
logarithms, Eq. can be written as:

o = [}3‘:61} |4 I:}g(i) + 1.069 ‘

The deflection equation due to interior loading
(Westergaard, 1939) is:

P 1 a 2}
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Stresses and Deflections in Rigid Pavements

Stresses and Deflections due to Loading
Closed-Form Formulas-Interior Loading-Circular Load-Numerical Problem

For the loading shown in Figure, determine the maximum
stress and deflection due to interior loading.

a = § in.

$ k = 100 pei
Ly, o e ey e Tyt T e
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Stresses and Deflections in Rigid Pavements

Stresses and Deflections due to Loading
Closed-Form Formulas-Interior Loadina-Circular Load-Numerical Problem

Eh3 0.25
= | )
12(1 - ﬂz)k

b=a whena = 1.724h

b =\16a + h? - 0675h whena < 1.724h

03P (1) )
oy = .ﬁ g p 2

P 1 a E}
2T gl {1 L m(sz) B “-ﬁ“]('ﬁ)
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Stresses and Deflections in Rigid Pavements
Stresses and Deflections due to Loading
Closed-Form Formulas-Edge Loading-Circular Load
The stress due to edge loading was presented by
Westergaard (1926, 1933, 1948) in several different papers.
In his 1948 paper, he presented generalized solutions for
maximum stress and deflection produced by elliptical and
semielliptical areas placed at the slab edge. Setting the
length of both major and minor semiaxes of the ellipse to
the contact radius a leads to the corresponding solutions for
a circular or semicircular loaded area. In the case of a
semicircle, its straight edge is in line with the edge of the
slab. The results obtained from these new formulas differ
significantly from those of the previous formulas.
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Stresses and Deflections in Rigid Pavements
Stresses and Deflections due to Loading
Closed-Form Formulas-Edge Loading-Circular Load

According to loannides et al. (1985), the following equations
are the correct ones to use:

3(1+ )P [ e - 1.18(1 + 2v)a
, =3ty ln( Eh )_*_‘.84_4_»_’_1 v, L1§( v)]
[circ‘ic) 1r(3 + V)hz i 1 ka4 3 2 ¢
31+ )P | 3 4p 1+ 2v)a
ge = bl s ]n( L 4)+3.84——1—+£——)-}
(semicircle) -7r(3 + V)h i ka 3 2¢
5 V2 + 1.2vP [1 B (0.76 + 0.4v)a]
(circle) VERK 4
V2 + l.2vP[ (0.323 + ().17v)aJ
A, = . i e
{semicircle) VERK €

Pavement Analysis and Design N



Stresses and Deflections in Rigid Pavements
Stresses and Deflections due to Loading
Closed-Form Formulas-Edge Loading-Circular Load

For Poissons ratio of 0.15, the above equations can be
written as:

- . {4 lug( E) + ﬂ.ﬁﬁﬁ(%) — 0.034

{cin:l::} 2

T, = Lol 4 Ing(%) + D_ZSE(%) + 0.650

{semicircle ) h

0.431P | a
A, = 1 - 02(2))|
(circle) k -El i £

0431P [
. =——11- l_'l34'}( )]
(semicirele) k€
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Stresses and Deflections in Rigid Pavements
Stresses and Deflections due to Loading
Closed-Form Formulas-Edge Loading-Circular Load-Numerical Problem
For the load shown in shown in Figure, determine the
maximum stress and deflection under both circular and
semicircular loaded areas.

42
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Stresses and Deflections in Rigid Pavements

Stresses and Deflections due to Loading
Closed-Form Formulas-Edge Loading-Circular Load-Numerical Problem

i, {4 mg( E) + ﬂ.ﬁﬁﬁ(%) — 0.034

.L

[cin:lﬁ}
T, = D‘B-T'P 4Img({p) + EIZSE( ) + 0.650
{semicircle ) h L \4 J

0.431P | (a”
A, = 1 =032 =
{Cil’(.‘?ﬂ]l k-fﬂ i '

0.431P [
A, == |1 - n.349(5)]
(semicirele) kés | £
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Stresses and Deflections in Rigid Pavements
Stresses and Deflections due to Loading
Closed-Form Formulas-Dual Tyres
With the exception of Eqgs. for a semicircular loaded area,
all of the closed-form formulas presented so far are based
on a circular loaded area. When a load is applied over a set
of dual tyres, it is necessary to convert it into a circular
area, so that the equations based on a circular loaded area
can be applied. If the total load is the same but the contact
area of the circle is equal to that of the duals, as has been
frequently assumed for flexible pavements, the resulting
stresses and deflection will be too large. Therefore, for a
given total load, a much larger circular area should be used
for rigid pavements.

44
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Stresses and Deflections in Rigid Pavements

Stresses and Deflections due to Loading

Closed-Form Formulas-Dual Tyres

Figure shows a set of dual tyres. It has been found that
satisfactory results can be obtained if the circle has an area
equal to the contact area of the duals plus the area between
the duals, as indicated by the hatched area shown in the
figure.

e Sy ———r

| |
03L ]| m
04L

03L] ‘\_/

06L @ Sa—06L ' gL |

/')
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Stresses and Deflections in Rigid Pavements
Stresses and Deflections due to Loading
Closed-Form Formulas-Dual Tyres

34

I 1
I . a—|

il 77
o \///@ |1

| |
06L  Sa—06L ' gL |

If P, is the load on one tyre and q is the contact pressure, the
area of each tyre is:

P
?d = 7(0.3L) + (0.4L)(0.6L) = 0.5227L?
L= |t

YV 0.5227q
Pavement Analysis and Design
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Stresses and Deflections in Rigid Pavements

Stresses and Deflections due to Loading
Closed-Form Formulas-Dual Tyres

The area of an equivalent circle is:

H—Sd B EERE—
| |

_m7

\\

=

N

.

l

06L | Sa—06L

06L

mat =2 X 05227L% + (§g — 0.6L)L = 0.4454L% + S4L

Substituting value of L
, _ 0.8521P; P,

—

+
g M\ 0.52274

gt

So the radius of contact area is

~ \/53521Pd+5d( P, )“?
¢ qm 7\ 0.5227qg
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Stresses and Deflections in Rigid Pavements
Stresses and Deflections due to Loading
Closed-Form Formulas-Dual Tyres-Numerical Problem
Using Westergaard's formulas, determine the maximum
stresses and deflections if the 10,000-1b load is applied on a
set of duals spaced at 14 in. on centers, as shown in Figure,
instead of over a 6 in. circular area.

T e
() s0001b
14{17 i :aa.4zpsi o =1
r— a="
() sm01b
10in.
k = 100 pei
O Ure=? U'l.;?[ ]
b A.=1 A=7
I | |
RN &
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Stresses and Deflections in Rigid Pavements
Stresses and Deflections due to Loading
Closed-Form Formulas-Dual Tyres-Numerical Problem

_ \/ﬁﬂsmderSd( P, )“3
y gm 7\ 0.5227¢q

Ek3 0.25
s [12(1 — vz)kJ
B q.::|’ ~ (E\{E)Uf‘l
e ™ 7| ¢ ]

P a\/i”

.Il. "\- =3 [ Ia ] [.]-.H’(l.h-:‘



Stresses and Deflections in Rigid Pavements
Stresses and Deflections due to Loading
Closed-Form Formulas-Dual Tyres-Numerical Problem

b=u whena = 1.724h

b= \16a2+ k* -~ 0.675h whena < 1.724h

oy = GAMAF [ﬂlﬂ (i) + 1 nﬁ9]
; e g\ .
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Stresses and Deflections in Rigid Pavements
Stresses and Deflections due to Loading
Closed-Form Formulas-Dual Tyres-Numerical Problem

e UHE’P [4 lr::g( E) + U.Euﬁﬁ(%) = n.u34]

(circle)

431 P d
= ~0.82( =
{Cﬂ;‘?ﬂ} k'ﬁz [1 . (E):|
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Stresses and Deflections in Rigid Pavements

STRESSES DUE TO FRICTION

The friction between a concrete slab and its foundation causes
tensile stresses in the concrete, in the steel reinforcements, if any,
and in the tie bars.

For plain concrete pavements, the spacing between contraction
joints must be so chosen that the stresses due to friction will not
cause the concrete to crack.

For longer joint spacings, steel reinforcements must be provided to
take care of the stresses caused by friction. The number of tie bars
required is also controlled by the friction. Figure shows the
arrangement of joints and steel in concrete pavements.

52
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Stresses and Deflections in Rigid Pavements
STRESSES DUE TO FRICTION

Doweled transverse joints

"-h-.\_\‘h‘-
Longitudinal joint
i J ] #r: - - I ] ] ] i \‘i | ]
I | ] r I 1 1 1 I
Tie hars - -
£ 3
\i H

[istributed steel
or wire fabric —"|

Pavement Analysis and Design



Stresses and Deflections in Rigid Pavements
STRESSES DUE TO FRICTION-Effect of Volume Change on Concrete
The volume change caused by the variation of

temperature and moisture has two Iimportant
effects on concrete.

First, it induces tensile stresses and causes the
concrete to crack.

Second, it causes the joint to open and decreases
the efficiency of load transfer.

54
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Stresses and Deflections in Rigid Pavements

STRESSES DUE TO FRICTION-Effect of Volume Change on Concrete
Concrete Stress

Figure shows a concrete pavement subject to
a decrease in temperature. Due to symmetry, Q\]\r— Li2 " Planeof
O
q\.\

the slab tends to move from both ends symmetry

toward the center, but the subgrade prevents L / % ach
it from moving; thus, frictional stresses are |

developed between the slab and the Frictional stress
Su bg rade (a) Free Body Diagram

// Center of slab

|

The amount of friction depends on the
relative movement, being zero at the center
where no movement occurs and maximum at
some distance from the center where the
movement is fully mobilized, as shown in
Figure.

>

Fully mobilized
frictional stress

[

(b) Variation of Frictional Stress
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Stresses and Deflections in Rigid Pavements

STRESSES DUE TO FRICTION-Effect of Volume Change on Concrete

Concrete Stress

For practical purposes, an average coefficient of friction f, may be

assumed. The tensile stress in the concrete is greatest at the center

and can be determined by equating the frictional force per unit

width of slab, y.hLf, /2, to the tensile force ¢ h, as shown in Figure:
o=y LT, /12

in which o, is the stress in the concrete, y. is the unit weight of the
concrete, L is the length of the slab, and f, is the average coefficient
of friction between slab and subgrade, usually taken as 1.5.
Equation implies that the stress in the concrete due to friction is
Independent of the slab thickness.
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STRESSES DUE TO FRICTION-Effect of Volume Change on Concrete
Concrete Stress-Numerical problem

Given a concrete pavement with a joint spacing of 25 ft and
a coefficient of friction of 1.5, as shown. Determine the
stress in concrete due to friction.

| _ 231t

1—41:--!-ﬂ',:=?
-— a— A . - A— | = = = > =
[=1.5 |

!

—_—
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Stresses and Deflections in Rigid Pavements

STRESSES DUE TO FRICTION-Effect of Volume Change on Concrete
Concrete Stress-Numerical problem

y.= 150 pcf =150/12° = 0.0868 pci
L=25ft = 25x12=300 in.
f =15

6=y, Lf, /2 =0.0868x300x1.5/2 = 19.5 psi
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STRESSES DUE TO FRICTION

Joint Opening

The spacing of joints in plain concrete pavements depends
more on the shrinkage characteristics of the concrete rather
than on the stress in the concrete.

Longer joint spacings cause the joint to open wider and
decrease the efficiency of load transfer. The opening of a
joint can be computed approximately by (Darter and
Barenberg, 1977):

AL=CL (a, AT + &)
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Stresses and Deflections in Rigid Pavements

STRESSES DUE TO FRICTION-Joint Opening  AL=CL (¢ AT +¢)
in which 4L is the joint opening caused by temperature change
and drying shrinkage of concrete;

a, 1s the coefficient of thermal expansion of concrete, generally 5 to
6 x10-% /°F (9 to 10.8x10°5/°C);

¢ 1s the drying shrinkage coefficient of concrete, approximately 0.5
to 2.5x10%4;

L is the joint spacing or slab length;

AT is the temperature range, which is the temperature at
placement minus the lowest mean monthly temperature; and

C is the adjustment factor due to slab-subbase friction, 0.65 for
stabilized base and 0.8 for granular subbase.
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Stresses and Deflections in Rigid Pavements

STRESSES DUE TO FRICTION-Joint Opening-Numerical problem
Given AT = 60°F, a,= 5.5x10%°F, ¢ = 1.0x10*, C = 0.65 and
the allowable joint openings for undoweled and doweled
joints are 0.05 and 0.25 in. respectively, determine the
maximum allowable joint spacing.

AL=CL (AT +¢)
L=A4L/C (a, AT + ¢)
For undoweled joints:
L=AL/C (a, AT+ £)=0.05/0.65(5.5x10°x60+ 1.0x10-4)=178.9 in=14.9ft

For doweled joints:
L=AL/C (a, AT+ £)=0.25/0.65(5.5x10°x60+ 1.0x10-4)=892.9in=74.4ft
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Stresses and Deflections in Rigid Pavements

STRESSES DUE TO FRICTION-Steel stress
Steel Is used In concrete pavements as
reinforcements, tie bars and dowel bars.

The design of longitudinal and transverse
reinforcements and of the tie bars across

longitudinal joints is based on the stresses due to
friction.
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STRESSES DUE TO FRICTION-Steel stress
Reinforcements

Wire fabric or bar mats may be used in concrete slabs for
control of temperature cracking. These reinforcements do
not increase the structural capacity of the slab but are used
for two purposes:

* To increase the joint spacing and
* To tie the cracked concrete together and maintain load
transfers through aggregate interlock.
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Stresses and Deflections in Rigid Pavements

STRESSES DUE TO FRICTION-Steel stress
Reinforcements
o=y LT, /2

When steel reinforcements are used, it is assumed that all
tensile stresses are taken by the steel alone, so ¢,h must be
replaced by A f, and above equation becomes:

A=y hLf, /21,

In which A, is the area of steel required per unit width and f,is the
allowable stress in steel. This equation indicates that the amount of
steel required is proportional to the length of slab.
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STRESSES DUE TO FRICTION-Steel stress
Reinforcements

The steel is usually placed at the mid depth of the
slab and discontinued at the joint.

The amount of steel obtained from above
equation is at the center of the slab and can be
reduced toward the end.

However, in actual practice the same amount of
steel is used throughout the length of the slab.
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Stresses and Deflections in Rigid Pavements

STRESSES DUE TO FRICTION-Steel stress
Reinforcements

Table 4.1 gives the allowable stress for different types and
grades of steel. The allowable stress is generally taken as
two-thirds of the yield strength.

TABLE 4.7 Yield Strength and Allowable Stress for Steel

Type and grade of steel Yield strength (psi) Allowable stress (psi)
Billet steel, intermediate grade 40,000 27,000

Rail steel or hard grade of hillet steel S0, IO 33,0000

Rail steel, special grade 60,000 40,000

Billet steel, 60,000 psi minimum vield 60,000 40,000

Cold drawn wire {smooth) 65,000 43,000

Cold drawn wire (deformed) 70,000 46,000
Noe.1psi = 6.9 kPa.
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Stresses and Deflections in Rigid Pavements
STRESSES DUE TO FRICTION-Steel stress

Reinforcements

TABLE 4.2 Weights and Dimensions of Standard Reinforang Bars
Nominal dimensions, round sections
Bar size Weight Diameter Cross-sectional Pernimeter
fdesignation {1b/it) {in.) area (in.%) (in.)
No. 3 0.376 0375 .11 1.178
No. 4 i} 668 0.500 0.20 1.571
No.5 1.043 0.625 0.31 1.963
No. 6 1.502 (.750 n.44 2.356
Mo, 7 2.044 (L875 0.60 2.7449
MNo 8 2.670 1.000 0.79 3.142
No.9 3.400 1.128 1.00 3.544
Na. 10 4.303 1.270 1.27 3.990
No. 1l 5.313 1.410 1.56 4.430

r'l.’a.re. lin =254mm, llb =445MN, 1 It = 0.305 m.
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STRESSES DUE TO FRICTION-Steel stress
Reinforcements

TABLE 4.3 Weights and Dimensions of Welded Wire Fabric
Cross-sectional area {in.”/ft)
Wire size no. center-to-center spacing (in.)
Diameter Weight

Smooth Deformed (in.) Ib/ft 2 3 4 6 3 10 12
W3l D31 0.628 1.054 1.86 1.24 03 02 465 o372 Al
W30 D30 0.618 1.020 1.80 1.20 90 50 A5 36 30
W2s D28 0.597 852 168 112 B4 Af 42 336 .28
W26 D2a 0.575 34 1.56 1.04 78 A2 39 312 26
W24 D24 0.553 Bl 1.44 .06 .72 A8 36 288 24
W22 D2z 0.529 J48 132 B8 b6 A4 33 264 22
W20 D20 0.504 Rt i 1.20 B0 60 A0 30 24 .20
W18 DIE 0.478 612 1.08 g2 54 36 27 216 A8
W16 D16 0.451 44 96 64 AR 2 24 192 16
Wid D14 0.422 A76 A4 56 A2 28 21 68 14
wWi2 D12 0.390 8 g2 A8 36 24 A8 J44 A2
Wil D11 0.374 374 b6 44 33 22 165 132 a1
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Stresses and Deflections in Rigid Pavements

STRESSES DUE TO FRICTION-Steel stress-Reinforcements

TABLE 4.3 Weights and Dimensions of Welded Wire Fabric
Cross-sectional area (in./ft)
Wire size no. center-to-center spacing {in.)
Diameter Weight

Smooth Deformed {in.} Th/ft 2 3 q 6 a 10 12
W10.5 0.366 357 63 42 315 21 57 126 103
W10 D10 0.356 340 60 .40 30 20 A5 1z A0
Wa.5 0.348 323 37 38 .285 19 142 114 095
Wa Do 0.338 306 54 a6 27 A8 135 108 .09
WE.5 0.329 ZB9 S1 A4 255 A7 A2T 02 083
W8 D8 0.319 272 A8 32 24 16 12 0496 08
W7.5 0.309 255 45 30 225 A5 112 09 75
W7 D7 0.298 .238 42 28 21 14 105 084 07
W6.5 0.288 221 A9 .26 195 A3 kit 078 065
Wo D6 0.276 204 36 24 18 A2 09 072 06
W55 0.264 187 A3 22 165 11 .0DE2 066 055
W5 D5 0.252 170 30 20 15 10 075 08 03
W4.5 0.240 153 27 18 135 09 0&7 054 045
W4 D4 0.225 Jd36 24 Jda 12 08 6 048 04
Nore. Wire sizes other than those listed above may be produced provided the guantity reguired is sufficient to justify manufacture,
linn=254mm.1lh=445N,1ft = 035 m.

Source. After WRI (1975).
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Stresses and Deflections in Rigid Pavements

STRESSES DUE TO FRICTION-Steel stress
Reinforcements

Table 4.2 shows the weight and dimensions of reinforcing bars and
Table 4.3 shows those of welded wire fabric.

Welded wire fabric is prefabricated reinforcement consisting of
parallel series of high-strength, cold-drawn wires welded together
In square or rectangular grids. The spacings and sizes of wires are
identified by "'style."" A typical style designation is 6x12-W8xW6,
in which the spacing of longitudinal wires is 6 in. (152 mm), the
spacing of transverse wires is 12 in. (305 mm), the size of
longitudinal wire is W8 with a cross-sectional area of 0.08 in?. (51.6
mm?) and the size of transverse wires is W6 with a cross sectional
area of 0.06 in?. (38.7 mm?).

The typical style with deformed welded wire fabric is 6x12-D8xD6.
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STRESSES DUE TO FRICTION-Steel stress-Reinforcements

The following standard practices on wire sizes, spacings,
laps and clearances are recommended by the Wire
Reinforcement Institute (WRI, 1975):

1. Because the fabric is subjected to bending stresses as well
as tensile stresses at cracks, neither the longitudinal nor the
transverse wires should be less than W4 or D4 .

2. To provide generous opening between wires to permit
placement and vibration of concrete, the minimum spacing
between wires should not be less than 4 in. (102 mm). The
maximum spacing should not be greater than 12 in. (305
mm) between longitudinal wires and 24 in. (610 mm)
between transverse wires.
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Stresses and Deflections in Rigid Pavements

STRESSES DUE TO FRICTION-Steel stress
Reinforcements

The following standard practices on wire sizes, spacings, laps and
clearances are recommended by the Wire Reinforcement Institute
(WRI, 1975):

3. Because the dimensions of a concrete slab are usually greater
than those of the welded wire fabric, the fabric should be installed
with end and side laps. The end lap should be about 30 times the
longitudinal wire diameter but not less than 12 in. (305 mm). The
side laps should be about 20 times the transverse wire diameter
but not less than 6 in. (152 mm).

4. The fabric should extend to about 2 in. (51 mm) but not more
than 6 in. (152 mm) from the slab edges. The depth from the top of
slab should not be less than 2.5 in. (64 mm) or more than mid
depth. s
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STRESSES DUE TO FRICTION-Steel stress
Reinforcements-Numerical problem

Determine the wire fabric required for a two-lane concrete
pavement, 8 in. thick, 60 ft long and 24 ft wide, with a
longitudinal joint at the center, as shown.

h=8in

40

e Style of
P J&—" wire fabric 7
J
el }

. .
60 fit !
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Stresses and Deflections in Rigid Pavements
STRESSES DUE TO FRICTION-Steel stress-Reinforcements-Numerical problem
y.= 150 pcf =150/123 = 0.0868 pci
L=60ft =60x12=720in.

W=24ft=24x12=288in.

h = 8in.

f,=15

f, = 43,000 psi

Longitudinal steel:

A=y hLf, /2 f = 0.0868x8x720x1.5/(2x43,000)
=0.00872 in?/in.=0.105 in?/ft.

Transverse steel:

A=y hLf, /2 f, = 0.0868x8x288x1.5/(2x43,000)
=0.00349 in?/in.=0.042 in?/ft.

From Table 4.3 use 6x12-W5.5xW4.5 with steel area 0.11 in?/ft. for

longitudinal wires and 0.045 in?/ft. for transverse wires.
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STRESSES DUE TO FRICTION-Steel stress-Reinforcements

TABLE 4.3 Weights and Dimensions of Welded Wire Fabric
Cross-sectional area (in.”/ft)
Wire size no. center-to-center spacing {in.)
Diameter Weight
Smooth Deformed {in.} Ib/ft 2 3 4 6 L] 10 12
| |

W10.5 0.366 357 63 42 315 21 ST 126 1035
WIi0 D10 0.356 340 .60 ] 30 20 A5 12 A0
Wa.5 0.348 323 57 g8 .285 19 142 114 095
W9 D9 0.338 306 54 3 271 a8 135 108 .09
WE.5 0.329 ZB9 S1 A4 255 A7 A2T 02 85
W8 D8 0.319 272 A8 A2 24 A6 A2 096 03
W7.5 0.309 255 45 A0 225 A5 112 09 075
W7 D7 0.298 238 42 28 21 14 105 084 07
W6.5 0.288 221 39 26 195 a3 097 078 065
Wa D& 0.276 204 36 24 .18 12 09 072 06
W5.5 (.264 187 33 .22 d65 | .11 | 082 066 535
W5 D5 0.252 170 30 20 15 10 075 06 03
W4.5 0.240 153 27 18 I35 09 067 054 | 045
W4 D4 0.225 A36 24 Jda A2 08 A6 048 04

Nore. Wire sizes other than those listed above may be produced provided the guantity reguired is sufficient to justify manufacture,
Lin, =254mm,11lb=445N,1ft = 035 m.

Source. After WRI (1975).
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