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STRESSES DUE TO CURLING

During the day, when the temperature on the top of the slab

is greater than that at the bottom, the top tends to expand

with respect to the neutral axis, while the bottom tends to

contract. However, the weight of the slab restrains it from

expansion and contraction; thus, compressive stresses are

induced at the top, tensile stresses at the bottom.

At night, when the temperature on the top of the slab is

lower than that at the bottom, the top tends to contract with

respect to the bottom; thus, tensile stresses are induced at

the top and compressive stresses at the bottom.
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STRESSES DUE TO CURLING

Another explanation of curling stress can be made in terms

of the theory of a plate on a Winkler, or liquid, foundation.

A Winkler foundation is characterized by a series of springs

attached to the plate, as shown in Figure.
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STRESSES DUE TO CURLING

When the temperature on the top is greater than that at the

bottom, the top is longer than the bottom and the slab curls

downward. The springs at the outside edge are in

compression and push the slab up, while the springs in the

interior are in tension and pull the slab down. As a result,

the top of the slab is in compression and the bottom is in

tension.
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STRESSES DUE TO CURLING

When the temperature on the top is lower than that at the

bottom, the slab curls up-ward. The exterior springs pull

the slab down while the interior springs push the slab up,

thus resulting in tension at the top and compression at the

bottom.
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Bending of Infinite Plate

The difference between a beam and a plate is that the beam

is stressed in only one direction, the plate in two directions.

For stresses in two directions, the strain εx, in the x direction

can be determined by the generalized Hooke's law,

………………Eq.1

in which E is the elastic modulus of concrete. The first term

on the right side of Eq.1 indicates the strain in the x

direction caused by stress in the x direction; the second

term indicates the strain in the x direction caused by stress

in the y direction.
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Bending of Infinite Plate

Similarly,

………………Eq.2

When the plate is bent in the x direction, εy , should be equal

to 0 because the plate is so wide and well restrained that no

strain should ever occur unless near the very edge. Setting

Eq.2 to 0 yields:

………………Eq.3

Substituting Eq.3 into Eq.1 and solving for εx gives

………………Eq.4

Eq.4 indicates the stress in the bending direction, Eq.3 the

stress in the direction perpendicular to bending.
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Bending of Infinite Plate

When bending occurs in both the x and y

directions, as is the case for temperature curling,

the stresses in both directions must be

superimposed to obtain the total stress.

The maximum stress in an infinite slab due to

temperature curling can be obtained by assuming

that the slab is completely restrained in both x

and y directions.
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Bending of Infinite Plate
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Bending of Infinite Plate

Let Δt be the temperature differential between the top and

the bottom of the slab and αt be the coefficient of thermal

expansion of concrete. If the slab is free to move and the

temperature at the top is greater than that at the bottom,

the top will expand by a strain of αt Δt/2 and the bottom will

contract by the same strain, as shown in Figure. If the slab

is completely restrained and prevented from moving, a

compressive strain will result at the top and a tensile strain

at the bottom. The maximum strain is

………………Eq.5
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Bending of Infinite Plate

From Eq.4, the stress in the x direction due to bending in

the x direction is

………………Eq.6

Because Eq.6 is also the stress in the y direction due to

bending in the y direction, from Eq.3, the stress in the x

direction due to bending in the y direction is

………………Eq.7

The total stress is the sum of Eqs.6 and 7:

…………Eq.8

Pavement Analysis and Design



Stresses and Deflections in Rigid Pavements

12

Bending of Infinite Plate

The preceding analysis is based on the

assumption that the temperature distribution is

linear throughout the depth of the slab. This is an

approximation, because the actual temperature

distribution is nonlinear.
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Curling Stresses in Finite Slab
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Curling Stresses in Finite Slab
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Curling Stresses in Finite Slab

Figure shows a finite slab with lengths Lx in the x direction

and Ly in the y direction. The total stress in the x direction

can be expressed as:

………Eq.9a

in which Cx and Cy are correction factors for a finite slab.

The first term in Eq.9a is the stress due to bending in the x

direction and the second term is the stress due to bending in

the y direction. Similarly, the stress in the y direction is

…………Eq.9b
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Curling Stresses in Finite Slab

Using Westergaard's analysis, Bradbury (1938) developed a

simple chart for determining Cx and Cy, as shown in Figure.

The correction factor Cx depends on Lx /e and the correction

factor Cy depends on Ly /e where e is the radius of relative

stiffness, defined as:

………Eq.10

in which E is the modulus of elasticity of concrete, h is the

thickness of the slab, υ is Poisson ratio of concrete, and k is

the modulus of subgrade reaction.
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Curling Stresses in Finite Slab
Here modulus of 4 x 106 psi and a Poisson ratio of 0.15 are

assumed for the concrete. Equation 9 gives the maximum interior

stress at the center of a slab. The edge stress at the midspan of the

slab can be determined by:

………Eq.11

in which σ may be σx or σy depending on whether C is Cx or Cy.

Note that Eq.11 is the same as Eq.9 when the Poisson ratio at the

edge is taken as 0.

It can be seen from Figure that the correction factor C increases as

the ratio L/e increases.
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Curling Stresses in Finite Slab-Numerical Problem
Figure shows a concrete slab, 25 ft long, 12 ft wide and 8 in. thick,

subjected to a temperature differential of 20°F. Assuming that k =

200 pci and αt = 5x10-6 in./in./°F, determine the maximum curling

stress in the interior and at the edge of the slab.
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Curling Stresses in Finite Slab-Numerical Problem
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Curling Stresses in Finite Slab-Numerical Problem
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Curling Stresses in Finite Slab-Temperature Differentials

Curling stresses in concrete pavements vary with

the temperature differentials between the top and

bottom of a slab.

Unless actual field measurements are made, it is

reasonable to assume a maximum temperature

gradient of 2.5 to 3.5°F per inch of slab (0.055 to

0.077°C/mm) during the day and about half the

above values at night.
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Curling Stresses in Finite Slab-Combined Stresses
Even though curling stresses can be quite large and can cause

concrete to crack when combined with loading stresses, they are

usually not considered in the thickness design for the following

reasons:

1. Joints and steel are used to relieve and take care of curling

stresses. Curling stresses are relieved when the concrete cracks.

Minute cracks will not affect the load-carrying capacity of

pavements as long as the load transfer across cracks can be

maintained.

2. When the fatigue principle is used for design, it is not practical

to combine loading and curling stresses. A pavement might be

subjected to millions of load repetitions during the design period,

but the number of stress reversals due to curling is quite limited.
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Curling Stresses in Finite Slab-Combined Stresses

3. Curling stresses may be added to or subtracted from

loading stresses to obtain the combined stresses. If the

design is governed by the edge stress, curling stresses should

be added to loading stresses during the day but subtracted

from the loading stresses at night. Due to this compensative

effect and the fact that a large number of heavy trucks are

driven at night, it may not be critical if curling stresses are

ignored.
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Stresses and Deflections due to Loading
Three methods can be used to determine the stresses and

deflections in concrete pavements:

closed-form formulas, influence charts and finite-element

computer programs.

The formulas originally developed by Westergaard can be applied

only to a single-wheel load with a circular, semicircular, elliptical

or semielliptical contact area.

The influence charts developed by Pickett and Ray (1951) can be

applied to multiple-wheel loads of any configuration. Both

methods are applicable only to a large slab on a liquid foundation.

If the loads are applied to multiple slabs on a liquid, solid or layer

foundation with load transfer across the joints, the finite-element

method should be used.
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Stresses and Deflections due to Loading

Closed-Form Formulas

These formulas are applicable only to a very large

slab with a single-wheel load applied near the

corner, in the interior of a slab at a considerable

distance from any edge and near the edge far

from any corner.
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Stresses and Deflections due to Loading

Closed-Form Formulas-Corner Loading
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Stresses and Deflections due to Loading

Closed-Form Formulas-Corner Loading

The Goldbeck (1919) and Older (1924) formula is the

earliest one for use in concrete pavement design.

The formula is based on a concentrated load P applied at

the slab corner, as shown in Figure.

When a load is applied at the corner, the stress in the slab is

symmetrical with respect to the diagonal.

For a cross section at a distance x from the corner, the

bending moment is Px and the width of section is 2x.
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Stresses and Deflections due to Loading
Closed-Form Formulas-Corner Loading-Concentrated Load

When the subgrade support is neglected and the slab is considered

as a cantilever beam, the tensile stress on top of the slab is:

in which σc is the stress due to corner loading, P is the

concentrated load and h is the thickness of the slab. Note that σc

does not depend on x. In other words, every cross section, no

matter how far from the corner, will have the same stress. If the

load is really a concentrated load applied at the very corner, above

Eq. is an exact solution, because, at a cross section near to the load,

with x approaching 0, the subgrade reaction is very small and can

be neglected.
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Stresses and Deflections due to Loading

Closed-Form Formulas-Corner Loading-Circular Load
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Stresses and Deflections due to Loading

Closed-Form Formulas-Corner Loading-Circular Load
Figure shows a circular load applied near the corner of a slab.

Because the section of maximum stress is not near the corner, the

total subgrade reactive force is quite large and cannot be

neglected. Westergaard (1926) applied a method of successive

approximations and obtained the formulas

in which Δc is the corner deflection, e is the radius of relative

stiffness, a is the contact radius and k is the modulus of subgrade

reaction. Pavement Analysis and Design
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Stresses and Deflections due to Loading

Closed-Form Formulas-Corner Loading-Circular Load

Westergaard also found that the maximum

moment occurs at a distance of 2.38√ae from the

corner.

For a concentrated load with a=0, Eqs.

are identical.
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Stresses and Deflections due to Loading

Closed-Form Formulas-Corner Loading-Circular Load

Ioannides et al. (1985) applied the finite-element method to

evaluate Westergaard's solutions. They suggested the use of

the relationships:

in which c is the side length of a square contact area. They found

that the maximum moment occurs at a distance of 1.80c0.32 e0.59

from the corner. If a load is applied over a circular area, the value

of c must be selected so that the square and the circle have the

same contact area: c = 1 .772a
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Stresses and Deflections due to Loading
Closed-Form Formulas-Corner Loading-Circular Load-Numerical Problem

Figure shows a concrete slab subjected to a corner loading.

Given k=100 pci, h=10 in., a = 6 in. and P=10,000lb,

determine the maximum stress and deflection due to corner

loading by Westergaard formula and Ioannides et al.

formula.
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Stresses and Deflections due to Loading
Closed-Form Formulas-Corner Loading-Circular Load-Numerical Problem

c = 1 .772a

Westergaard formula 

Ioannides et al. formula
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Stresses and Deflections due to Loading

Closed-Form Formulas-Interior Loading-Circular Load

The earliest formula developed by Westergaard (1926) for

the stress in the interior of a slab under a circular loaded

area of radius a is:

in which e is the radius of relative stiffness and
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Stresses and Deflections due to Loading

Closed-Form Formulas-Interior Loading-Circular Load

For a Poisson ratio of 0.15 and in terms of base-10

logarithms, Eq. can be written as:

The deflection equation due to interior loading

(Westergaard, 1939) is:
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Stresses and Deflections due to Loading
Closed-Form Formulas-Interior Loading-Circular Load-Numerical Problem

For the loading shown in Figure, determine the maximum

stress and deflection due to interior loading.
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Stresses and Deflections due to Loading
Closed-Form Formulas-Interior Loading-Circular Load-Numerical Problem
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Stresses and Deflections due to Loading

Closed-Form Formulas-Edge Loading-Circular Load

The stress due to edge loading was presented by

Westergaard (1926, 1933, 1948) in several different papers.

In his 1948 paper, he presented generalized solutions for

maximum stress and deflection produced by elliptical and

semielliptical areas placed at the slab edge. Setting the

length of both major and minor semiaxes of the ellipse to

the contact radius a leads to the corresponding solutions for

a circular or semicircular loaded area. In the case of a

semicircle, its straight edge is in line with the edge of the

slab. The results obtained from these new formulas differ

significantly from those of the previous formulas.
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Stresses and Deflections due to Loading

Closed-Form Formulas-Edge Loading-Circular Load

According to Ioannides et al. (1985), the following equations

are the correct ones to use:
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Stresses and Deflections due to Loading

Closed-Form Formulas-Edge Loading-Circular Load

For Poissons ratio of 0.15, the above equations can be

written as:
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Stresses and Deflections due to Loading
Closed-Form Formulas-Edge Loading-Circular Load-Numerical Problem

For the load shown in shown in Figure, determine the

maximum stress and deflection under both circular and

semicircular loaded areas.
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Stresses and Deflections due to Loading
Closed-Form Formulas-Edge Loading-Circular Load-Numerical Problem
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Stresses and Deflections due to Loading

Closed-Form Formulas-Dual Tyres

With the exception of Eqs. for a semicircular loaded area,

all of the closed-form formulas presented so far are based

on a circular loaded area. When a load is applied over a set

of dual tyres, it is necessary to convert it into a circular

area, so that the equations based on a circular loaded area

can be applied. If the total load is the same but the contact

area of the circle is equal to that of the duals, as has been

frequently assumed for flexible pavements, the resulting

stresses and deflection will be too large. Therefore, for a

given total load, a much larger circular area should be used

for rigid pavements.
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Stresses and Deflections due to Loading

Closed-Form Formulas-Dual Tyres

Figure shows a set of dual tyres. It has been found that

satisfactory results can be obtained if the circle has an area

equal to the contact area of the duals plus the area between

the duals, as indicated by the hatched area shown in the

figure.
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Stresses and Deflections due to Loading

Closed-Form Formulas-Dual Tyres

If Pd is the load on one tyre and q is the contact pressure, the

area of each tyre is:
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Stresses and Deflections due to Loading

Closed-Form Formulas-Dual Tyres

The area of an equivalent circle is:

Substituting value of L

So the radius of contact area is
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Stresses and Deflections due to Loading

Closed-Form Formulas-Dual Tyres-Numerical Problem

Using Westergaard's formulas, determine the maximum

stresses and deflections if the 10,000-lb load is applied on a

set of duals spaced at 14 in. on centers, as shown in Figure,

instead of over a 6 in. circular area.
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Stresses and Deflections due to Loading

Closed-Form Formulas-Dual Tyres-Numerical Problem
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Stresses and Deflections due to Loading

Closed-Form Formulas-Dual Tyres-Numerical Problem
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Stresses and Deflections due to Loading

Closed-Form Formulas-Dual Tyres-Numerical Problem
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STRESSES DUE TO FRICTION
The friction between a concrete slab and its foundation causes

tensile stresses in the concrete, in the steel reinforcements, if any,

and in the tie bars.

For plain concrete pavements, the spacing between contraction

joints must be so chosen that the stresses due to friction will not

cause the concrete to crack.

For longer joint spacings, steel reinforcements must be provided to

take care of the stresses caused by friction. The number of tie bars

required is also controlled by the friction. Figure shows the

arrangement of joints and steel in concrete pavements.
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STRESSES DUE TO FRICTION
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STRESSES DUE TO FRICTION-Effect of Volume Change on Concrete

The volume change caused by the variation of

temperature and moisture has two important

effects on concrete.

First, it induces tensile stresses and causes the

concrete to crack.

Second, it causes the joint to open and decreases

the efficiency of load transfer.
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STRESSES DUE TO FRICTION-Effect of Volume Change on Concrete

Concrete Stress

Pavement Analysis and Design

Figure shows a concrete pavement subject to

a decrease in temperature. Due to symmetry,

the slab tends to move from both ends

toward the center, but the subgrade prevents

it from moving; thus, frictional stresses are

developed between the slab and the

subgrade.

The amount of friction depends on the

relative movement, being zero at the center

where no movement occurs and maximum at

some distance from the center where the

movement is fully mobilized, as shown in

Figure.
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STRESSES DUE TO FRICTION-Effect of Volume Change on Concrete

Concrete Stress
For practical purposes, an average coefficient of friction fa may be

assumed. The tensile stress in the concrete is greatest at the center

and can be determined by equating the frictional force per unit

width of slab, γchLfa /2, to the tensile force σch, as shown in Figure:

σc= γc L fa /2

in which σc is the stress in the concrete, γc is the unit weight of the

concrete, L is the length of the slab, and fa is the average coefficient

of friction between slab and subgrade, usually taken as 1.5.

Equation implies that the stress in the concrete due to friction is

independent of the slab thickness.
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STRESSES DUE TO FRICTION-Effect of Volume Change on Concrete

Concrete Stress-Numerical problem

Given a concrete pavement with a joint spacing of 25 ft and

a coefficient of friction of 1.5, as shown. Determine the

stress in concrete due to friction.
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STRESSES DUE TO FRICTION-Effect of Volume Change on Concrete

Concrete Stress-Numerical problem

γc = 150 pcf =150/123 = 0.0868 pci

L=25ft = 25x12=300 in.

fa = 1.5

σc= γc L fa /2 = 0.0868x300x1.5/2 = 19.5 psi

Pavement Analysis and Design



Stresses and Deflections in Rigid Pavements

59

STRESSES DUE TO FRICTION

Joint Opening 

The spacing of joints in plain concrete pavements depends

more on the shrinkage characteristics of the concrete rather

than on the stress in the concrete.

Longer joint spacings cause the joint to open wider and

decrease the efficiency of load transfer. The opening of a

joint can be computed approximately by (Darter and

Barenberg, 1977):

ΔL = C L (αt ΔT + ε)
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STRESSES DUE TO FRICTION-Joint Opening ΔL = C L (αt ΔT + ε)

in which ΔL is the joint opening caused by temperature change

and drying shrinkage of concrete;

αt is the coefficient of thermal expansion of concrete, generally 5 to

6 x10-6 /°F (9 to 10.8x10-6/°C);

ε is the drying shrinkage coefficient of concrete, approximately 0.5

to 2.5x10-4;

L is the joint spacing or slab length;

ΔT is the temperature range, which is the temperature at

placement minus the lowest mean monthly temperature; and

C is the adjustment factor due to slab-subbase friction, 0.65 for

stabilized base and 0.8 for granular subbase.
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STRESSES DUE TO FRICTION-Joint Opening-Numerical problem

Given ΔT = 60°F, αt = 5.5x10-6/°F, ε = 1.0x10-4 , C = 0.65 and

the allowable joint openings for undoweled and doweled

joints are 0.05 and 0.25 in. respectively, determine the

maximum allowable joint spacing.

ΔL = C L (αt ΔT + ε)

L = ΔL/C (αt ΔT + ε)

For undoweled joints:
L=ΔL/C (αt ΔT+ ε)=0.05/0.65(5.5x10-6x60+ 1.0x10-4)=178.9 in=14.9ft

For doweled joints:
L=ΔL/C (αt ΔT+ ε)=0.25/0.65(5.5x10-6x60+ 1.0x10-4)=892.9in=74.4ft
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STRESSES DUE TO FRICTION-Steel stress

Steel is used in concrete pavements as

reinforcements, tie bars and dowel bars.

The design of longitudinal and transverse

reinforcements and of the tie bars across

longitudinal joints is based on the stresses due to

friction.
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STRESSES DUE TO FRICTION-Steel stress

Reinforcements

Wire fabric or bar mats may be used in concrete slabs for

control of temperature cracking. These reinforcements do

not increase the structural capacity of the slab but are used

for two purposes:

• To increase the joint spacing and

• To tie the cracked concrete together and maintain load

transfers through aggregate interlock.
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STRESSES DUE TO FRICTION-Steel stress

Reinforcements

σc= γc L fa /2

When steel reinforcements are used, it is assumed that all

tensile stresses are taken by the steel alone, so σch must be

replaced by As fs and above equation becomes:

As = γc hL fa /2 fs

in which As is the area of steel required per unit width and fs is the

allowable stress in steel. This equation indicates that the amount of

steel required is proportional to the length of slab.
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STRESSES DUE TO FRICTION-Steel stress

Reinforcements

The steel is usually placed at the mid depth of the

slab and discontinued at the joint.

The amount of steel obtained from above

equation is at the center of the slab and can be

reduced toward the end.

However, in actual practice the same amount of

steel is used throughout the length of the slab.
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STRESSES DUE TO FRICTION-Steel stress

Reinforcements

Table 4.1 gives the allowable stress for different types and

grades of steel. The allowable stress is generally taken as

two-thirds of the yield strength.
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STRESSES DUE TO FRICTION-Steel stress

Reinforcements
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STRESSES DUE TO FRICTION-Steel stress

Reinforcements
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STRESSES DUE TO FRICTION-Steel stress-Reinforcements
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STRESSES DUE TO FRICTION-Steel stress

Reinforcements
Table 4.2 shows the weight and dimensions of reinforcing bars and

Table 4.3 shows those of welded wire fabric.

Welded wire fabric is prefabricated reinforcement consisting of

parallel series of high-strength, cold-drawn wires welded together

in square or rectangular grids. The spacings and sizes of wires are

identified by "style." A typical style designation is 6x12-W8xW6,

in which the spacing of longitudinal wires is 6 in. (152 mm), the

spacing of transverse wires is 12 in. (305 mm), the size of

longitudinal wire is W8 with a cross-sectional area of 0.08 in2. (51.6

mm2) and the size of transverse wires is W6 with a cross sectional

area of 0.06 in2. (38.7 mm2).

The typical style with deformed welded wire fabric is 6x12-D8xD6.
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STRESSES DUE TO FRICTION-Steel stress-Reinforcements

The following standard practices on wire sizes, spacings,

laps and clearances are recommended by the Wire

Reinforcement Institute (WRI, 1975):

1. Because the fabric is subjected to bending stresses as well

as tensile stresses at cracks, neither the longitudinal nor the

transverse wires should be less than W4 or D4 .

2. To provide generous opening between wires to permit

placement and vibration of concrete, the minimum spacing

between wires should not be less than 4 in. (102 mm). The

maximum spacing should not be greater than 12 in. (305

mm) between longitudinal wires and 24 in. (610 mm)

between transverse wires.
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STRESSES DUE TO FRICTION-Steel stress

Reinforcements
The following standard practices on wire sizes, spacings, laps and

clearances are recommended by the Wire Reinforcement Institute

(WRI, 1975):

3. Because the dimensions of a concrete slab are usually greater

than those of the welded wire fabric, the fabric should be installed

with end and side laps. The end lap should be about 30 times the

longitudinal wire diameter but not less than 12 in. (305 mm). The

side laps should be about 20 times the transverse wire diameter

but not less than 6 in. (152 mm).

4. The fabric should extend to about 2 in. (51 mm) but not more

than 6 in. (152 mm) from the slab edges. The depth from the top of

slab should not be less than 2.5 in. (64 mm) or more than mid

depth.
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STRESSES DUE TO FRICTION-Steel stress

Reinforcements-Numerical problem

Determine the wire fabric required for a two-lane concrete

pavement, 8 in. thick, 60 ft long and 24 ft wide, with a

longitudinal joint at the center, as shown.
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STRESSES DUE TO FRICTION-Steel stress-Reinforcements-Numerical problem

γc = 150 pcf =150/123 = 0.0868 pci

L=60ft =60x12=720in.

W=24ft=24x12=288in.

h = 8in.

fa = 1.5

fs = 43,000 psi

Longitudinal steel:

As = γc hL fa /2 fs = 0.0868x8x720x1.5/(2x43,000)

=0.00872 in2/in.=0.105 in2/ft.

Transverse steel:

As = γc hL fa /2 fs = 0.0868x8x288x1.5/(2x43,000)

=0.00349 in2/in.=0.042 in2/ft.

From Table 4.3 use 6x12-W5.5xW4.5 with steel area 0.11 in2/ft. for

longitudinal wires and 0.045 in2/ft. for transverse wires.
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STRESSES DUE TO FRICTION-Steel stress-Reinforcements
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