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DYNAMICS OF STRUCTURES

Dynamics of Structures 2

Single Degree of Freedom System:

Forced Harmonic Vibration
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Forced Vibration

 The force vibration response of system is governed by:

 The exciting force may be of:
 Short duration

 Long duration

 The response of a system subjected to a short duration exciting force is 
also of short duration called transient response. Damping in the system 
causes the vibration to decay and the system returns to rest after a while. 
This type of response may be critical because of low cycle fatigue.

 The response to long duration force has two components:
 Transient component is due to the initial conditions and present only at the 

beginning and decays due to damping

 Steady state component lasts as long as the exciting force. 

The failure may be due to fatigue.
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Harmonic Forced Vibration

 A harmonic force is given by:

Where po is the amplitude of the force and Ω is the frequency of vibrating 
force.

 Example: Unbalanced rotating Machine

 The study of harmonic force vibration, while useful by itself, also provide 
an insight into the nature of force vibration of a more general type.
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Undamped Harmonic Vibration

 The undamped harmonic vibration of a dynamic system is governed by:

 The solution of the equation of motion is made with two parts:
 Complimentary solution: obtained by putting p(t) equal to zero and is 

equivalent to free vibration response of undamped system and is called 
transient response.

 Particular solution: giving the steady state response of the system. The 
particular response is of the form:

The value of G is obtained by satisfying the equation of motion:

 The complete solution is therefore:
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Undamped Harmonic Vibration (Cont..)

 Constant A and B are determined from the initial conditions

Where β = Ω/ω is known as the frequency ratio.
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Undamped Harmonic Vibration (Cont..)

 Dynamic Load Factor, D is the ratio of 
maximum dynamic deflection (steady state) 
to static deflection

 The amplitude of dynamic load factor AD

called dynamic magnification factor, is 
given by:

 For small value of β, AD is approaching 1.0 
and for large values AD is approaching zero

 For β =1.0 the response is infinitely large 
called resonance.
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Undamped Harmonic Vibration (Cont..)

 For β <1.0, AD is +ve and the system is said to be vibrating in phase with 
the applied force and for β <1.0, AD is –ve i.e. out-of-phase
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Putting this value of U and U" in above equation give
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Resonance Response: Undamped System
 The harmonic vibration response of undamped system is given by:

 For a simple case of uo = vo = 0

 For β = 1.0, the numerator and the denominator are both zero and the 
displacement becomes indeterminate. In the limiting case, the problem can be 
solved by L’Hospital’s rule
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Putting value of Beta

Harmonic response for
Beta = 1 & uo = vo = 0


