DYNAMICS OF STRUCTURES

Vibration Measuring Instruments

- Vibration measurement is very important in structural engineering, e.g. measurement of ground motion, building motion during earthquake and laboratory testing
- Although today's vibration measuring instruments also called *seismic instruments*, are highly developed and intricate, the underlying principle is simple, i.e. *spring-mass-damper system*
- When subjected to motion, the mass moves and the motion is recorded after suitable *magnifications*
- Different instruments are required for *seismological observation* and earthquake engineering measurements

Measurement of Acceleration

• Let the support move with a harmonic acceleration given by:

 $\ddot{u}_g = A \sin \Omega t$

• The measured displacement and phase angle of the motion of mass are given by: $u(t) = \rho \sin(\Omega t - \phi)$

• Where
$$\tan \phi = \frac{2\zeta\beta}{1-\beta^2}$$

$$\rho = \frac{mA}{k} \frac{1}{\sqrt{(1-\beta^2)^2 + (2\zeta\beta)^2}} = \frac{A}{\omega^2} \frac{1}{\sqrt{(1-\beta^2)^2 + (2\zeta\beta)^2}}$$

• Now the ratio of the amplitude of measured displacement and the amplitude of ground acceleration is given by:

$$\frac{\rho}{A} = \frac{1}{\omega^2} \frac{1}{\sqrt{\left(1 - \beta^2\right)^2 + \left(2\zeta\beta\right)^2}}$$

• The ratio is dependent on the frequency ratio, i.e the frequency of ground acceleration

Measurement of Acceleration (Cont..)

- Since the ground motion due to earthquake is having different frequency contents, the measured response should be independent of frequency of ground motion, i.e. $\rho\omega^2/A$ should not vary with β
- From the table and figure, $\rho \omega^2 / A$ remains almost constant for $\zeta = 0.7$ for β varying between 0 and 0.6, if the error is not to exceed 5%
- Since the amplitude ratio (ρ/A) is inversely proportional to frequency of the system (ω) , a high instrument frequency will result in low magnification and therefore must be magnified through some other means

β	$ ho \omega^2 / A$		Φ/β	
	$\zeta=0$	ζ=0.7	$\zeta=0$	ζ=0.7
0.0	1.00	1.000	0	1.400
0.1	1.01	1.000	0	1.405
0.2	1.04	1.000	0	1.419
0.3	1.10	0.998	0	1.442
0.4	1.19	0.991	0	1.470
0.5	1.33	0.975	0	1.502
0.6	1.56	0.947	0	1.533

Measurement of Acceleration (Cont..)

• The time shift between the measure response and ground motion is given by:

$$t_{s} = \frac{\phi}{\Omega} = \frac{1}{\Omega} \tan^{-1} \frac{2\zeta\beta}{1-\beta^{2}} = \frac{1}{\beta\omega} \tan^{-1} \frac{2\zeta\beta}{1-\beta^{2}}$$
$$\frac{t_{s}}{T} = \frac{1}{2\pi\beta} \tan^{-1} \frac{2\zeta\beta}{1-\beta^{2}}$$

- When the motion being measured is harmonic, the shift is of no particular significance
- When the motion have several harmonic components as in the case of earthquake, this shift will distort the motion of instrument
- For $\zeta = 0.7$ the shift is practically constant, i.e. phase angle is a linear function of β and Ω

Measurement of Displacement

- Let the support move with a harmonic displacement given by: $u_g = G \sin \Omega t$
- The measured displacement and phase angle of the motion of mass are given by: $c \quad k$

given by:

$$u(t) = \rho \sin(\Omega t - \phi)$$

$$\tan \phi = \frac{2\zeta\beta}{1 - \beta^2}$$

$$\rho = \frac{mG\Omega^2}{k} \frac{1}{\sqrt{(1 - \beta^2)^2 + (2\zeta\beta)^2}} = G \frac{\beta^2}{\sqrt{(1 - \beta^2)^2 + (2\zeta\beta)^2}}$$

• Now the ratio of the amplitude of measured displacement and the amplitude of ground displacement is given by:

$$\frac{\rho}{G} = \frac{\beta^2}{\sqrt{\left(1 - \beta^2\right)^2 + \left(2\zeta\beta\right)^2}}$$

• The measured motion is dependent on frequency ratio

Measurement of Displacement (Cont..)

- Since the ground motion due to earthquake is having different frequency contents, the measured response should be independent of frequency of ground motion, i.e. ρ/G should not vary with β
- From the figure, ρ/G remains almost constant for high values of β
- Thus the frequency of displacement measuring instrument shall be very low in comparison with forcing frequency.
- Such instrument is unwieldy because of the heavy mass and soft spring
- For high value of ρ/G is almost unity and phase angle is 180°, for any value of damping

therefore:

$$u(t) = -G\sin\Omega t$$

Energy in Viscous Damping

• The energy input per cycle to the system due to the applied force is given by:

$$E_{I} = \int p(t) du = \int_{0}^{2\pi/\Omega} (p_{o} \sin \Omega t) (\dot{u} dt) = \int_{0}^{2\pi/\Omega} (p_{o} \sin \Omega t) (\rho \Omega \cos(\Omega t - \phi) dt)$$
$$= \pi \rho p_{o} \sin \phi$$

• The energy per cycle dissipated in the system is given by:

$$E_{D} = \int f_{D} du = \int_{0}^{2\pi/\Omega} (c\dot{u})(\dot{u}dt) = \int_{0}^{2\pi/\Omega} c(\rho\Omega\cos(\Omega t - \phi))^{2} dt$$
$$= c\pi\Omega\rho^{2}$$
$$2\zeta\beta = 2\zeta\beta t$$

• From the figure:
$$\sin\phi = \frac{2\zeta\rho}{\sqrt{(1-\beta^2)^2 + (2\zeta\beta)^2}} = \frac{2\zeta\rho\kappa}{p_o}\rho$$

• Therefore:
$$E_I = \pi \rho p_o \left(\frac{2\zeta \beta k}{p_o} \rho \right) = 2\pi \rho^2 \zeta \beta k = c \pi \Omega \rho^2$$

 $E_I = E_D$

Hence:

Ο

Energy in Viscous Damping (Cont..)

• The Potential energy per cycle due to spring force is given by:

$$E_{S} = \int f_{S} du = \int_{0}^{2\pi/\Omega} (ku)(\dot{u}dt) = \int_{0}^{2\pi/\Omega} k(\rho \sin(\Omega t - \phi))(\rho \Omega \cos(\Omega t - \phi)) dt = 0$$

• The Kinetic energy per cycle due to inertia force is given by:

$$E_{K} = \int f_{I} du = \int_{0}^{2\pi/\Omega} (m\ddot{u})(\dot{u}dt) = \int_{0}^{2\pi/\Omega} k(-\rho\Omega^{2}\sin(\Omega t - \phi))(\rho\Omega\cos(\Omega t - \phi))dt = 0$$

• For
$$\beta = 1.0$$
, ($\sin \phi = 1$)

$$E_I = (\pi p_o)\rho \qquad E_D = (2\pi\zeta k)\rho^2$$

• For $E_I = E_D$

$$\pi p_o \rho = (2\pi\zeta k)\rho^2 \Longrightarrow \rho = \frac{p_o}{2\zeta k}$$

• Which is the same relation which was already derived using other method

Energy in Viscous Damping (Cont..)

• The spring, inertia and damping forces are given by:

$$f_{S} = ku$$

$$f_{I} = -m\Omega^{2}u$$

$$f_{D} = c\dot{u} = c\Omega\rho\cos(\Omega t - \phi)$$

$$f_{D} = c\Omega\sqrt{\rho^{2} - \rho^{2}\sin^{2}\Omega t} = c\Omega\sqrt{\rho^{2} - u^{2}}$$

$$\Rightarrow \left[\left(\frac{u}{\rho}\right)^{2} + \left(\frac{f_{D}}{c\Omega\rho}\right)^{2} = 1.0\right]$$

- Which is the equation of ellipse.
- The area enclosed by the ellipse is equal to dissipated energy
- The f_D -u curve is not a single value function but a loop called *hysteresis loop*

Energy in Viscous Damping (Cont..)

• The total resisting force (elastic + damping) is:

$$f_S + f_D = ku + c\Omega\sqrt{\rho^2 - u^2}$$

• The plot of $f_S + f_D$ is given in the figure which is the same but rotated ellipse

