Case 8 - Determination Of Nominal Strength $\left(P_{\mathrm{n}}\right)$ For Given Eccentricity $\left(e<e_{\mathrm{b}}\right)$

In this case, eccentricity (e) is known and the corresponding failure load $\left(P_{\mathrm{n}}\right)$ is to be calculated.

For smaller eccentricities, the failure will be by crushing of concrete in compression and the strength reduction factor (ϕ) will be 0.65 for tied columns.
$e<e_{\mathrm{b}} \quad \Rightarrow \quad P_{\mathrm{n}}>P_{\mathrm{nb}} \quad \Rightarrow \quad$ compression failure
A-Exact Solution
Assume that the compression steel is yielding.

Step 1: \quad The tension steel stress f_{s} is evaluated in terms of ' a ' from the strain diagram.

$$
f_{\mathrm{s}}=600 \frac{\beta_{1} d-a}{a}
$$

Step 2:
The above value of f_{s} is used in the expression for load and P_{n} is found in terms of ' a '.

$$
P_{\mathrm{n}}=0.85 f_{\mathrm{c}}^{\prime} b a+A_{\mathrm{s}}^{\prime} f_{\mathrm{y}}-A_{\mathrm{s}} f_{\mathrm{s}}
$$

Step 3:
The value of P_{n} from Step-2 is inserted in the expression for moment to get a cubic equation in terms of ' a '.

$$
\begin{aligned}
P_{\mathrm{n}} \times \mathrm{e}= & 0.85 f_{\mathrm{c}}^{\prime} b a\left(d-d^{\prime \prime}-a / 2\right) \\
& +A_{\mathrm{s}}^{\prime} f_{\mathrm{y}}\left(d-d^{\prime \prime}-d\right)+A_{\mathrm{s}} f_{\mathrm{y}}\left(d^{\prime \prime}\right)
\end{aligned}
$$

The resulting cubic equation is solved as under:
i) Simplify the equation such that the right side of equation becomes equal to zero and a polynomial is obtained on the left side.
$F(a)=0$
ii) The derivative of the left side polynomial with respect to ' a ' is evaluated.
$F^{\prime}(a)=\frac{d}{d a} F(a)$
iii) Trials are made as under until the value of the answer becomes stable.

$$
a_{\mathrm{n}+1}=a_{\mathrm{n}}-\frac{F\left(a_{n}\right)}{F^{\prime}\left(a_{n}\right)}
$$

$1^{\text {st }}$ Trial: Assume $a_{\mathrm{o}}=h / 2$ and calculate $F\left(\mathrm{a}_{\mathrm{o}}\right)$ and $F^{\prime}\left(\mathrm{a}_{\mathrm{o}}\right)$.
$2^{\text {nd }}$ Trial: $n=1$, revised value of ' a ' $=a_{1}=a_{\mathrm{o}}-\frac{F\left(a_{o}\right)}{F^{\prime}\left(a_{o}\right)}$
Calculate $F\left(\mathrm{a}_{1}\right)$ and $F^{\prime}\left(\mathrm{a}_{1}\right)$.
The above procedure is repeated until convergence is obtained for the value of ' a '.
Step 4: \quad The yielding of compression steel is checked as under:

$$
\begin{aligned}
\varepsilon_{\mathrm{s}}^{\prime} & =0.003 \frac{a-\beta_{1} d^{\prime}}{a} \\
f_{\mathrm{s}}^{\prime} & =600 \frac{a-\beta_{1} d^{\prime}}{a} \leq f_{\mathrm{y}}
\end{aligned}
$$

If the compression steel is not yielding, an expression for f_{s}^{\prime} is formulated in terms of ' a ' and this value of f_{s}^{\prime} is used in Steps 1 and 2 to get a new $3^{\text {rd }}$ order equation in terms of ' a '.

This equation is again solved by the procedure of Step-3 to get the correct value of ' a '.

Step 5:
Calculate f_{s} from the equation in Step-1.

Step 6: Calculate the nominal load from the load equation.

$$
P_{\mathrm{n}}=0.85 f_{\mathrm{c}}^{\prime} b a+A_{\mathrm{s}}^{\prime} f_{\mathrm{s}}^{\prime}-A_{\mathrm{s}} f_{\mathrm{s}}
$$

B-Trial Method

This method is not preferable because of very slow convergence of the solution. In some cases, the answer for ' a ' may even oscillate requiring a large number of trials.

Step 1: In the start, the value of ' a ' is assumed greater than $h / 2$.
Step 2: \quad The tension steel stress is calculated as follows:

$$
f_{\mathrm{s}}=600 \frac{\beta_{1} d-a}{a}
$$

Step 3: \quad The value of P_{n} is calculated from the moment equation.

$$
\begin{aligned}
P_{\mathrm{n}} \times \mathrm{e}= & 0.85 f_{\mathrm{c}}^{\prime} b a\left(d-d^{\prime \prime}-a / 2\right) \\
& +A_{\mathrm{s}}^{\prime} f_{\mathrm{y}}\left(d-d^{\prime \prime}-d^{\prime}\right)+A_{\mathrm{s}} f_{\mathrm{s}}\left(d^{\prime \prime}\right)
\end{aligned}
$$

Step 4: \quad By using the value of P_{n} calculated in Step-3, a new value of ' a ' is calculated from the load equation.

Step 5: \quad The steps 2 to 4 are repeated until P_{n} becomes nearly constant.

Case 9 - \quad Determination Of Nominal Strength $\left(P_{\underline{n}}\right)$ For Given Moment $\left(P_{\underline{n}}<P_{\underline{n b}}\right)$

The moment M_{n} is given and it is known that the failure is by yielding of tension steel. Load P_{n} is to be found out and the strength reduction factor (ϕ) will be 0.65 to 0.9 for tied columns.
$f_{\mathrm{s}}=f_{\mathrm{y}}$
Assume that the compression steel is yielding, $f_{\mathrm{s}}{ }^{\prime}=f_{\mathrm{y}}$.
Step 1: Calculate ' a ' from the moment equation.

$$
\begin{aligned}
M_{\mathrm{n}}= & 0.85 f_{\mathrm{c}}^{\prime} b a\left(d-d^{\prime \prime}-a / 2\right) \\
& +A_{\mathrm{s}}^{\prime} f_{\mathrm{y}}\left(d-d^{\prime \prime}-d\right)+A_{\mathrm{s}} f_{\mathrm{y}}\left(d^{\prime \prime}\right)
\end{aligned}
$$

Step 2: \quad The yielding of compression steel is checked as under:

$$
\begin{aligned}
\varepsilon_{\mathrm{s}}^{\prime} & =0.003 \frac{a-\beta_{1} d^{\prime}}{a} \\
f_{\mathrm{s}}^{\prime} & =600 \frac{a-\beta_{1} d^{\prime}}{a} \leq f_{\mathrm{y}}
\end{aligned}
$$

If the compression steel is not yielding, an expression for f_{s}^{\prime} is formulated in terms of ' a ' and this value of f_{s} ' is used in Steps 1. This equation is solved to get the correct value of ' a '.

Step 3: Calculate the nominal load from the load equation.

$$
P_{\mathrm{n}}=0.85 f_{\mathrm{c}}^{\prime} b a+A_{\mathrm{s}}^{\prime} f_{\mathrm{s}}^{\prime}-A_{\mathrm{s}} f_{\mathrm{y}}
$$

Step 4: \quad Calculate ε_{s} and hence evaluate the value of ϕ.
Case 10 - Determination Of Nominal Strength $\left(P_{\underline{n}}\right)$ For Given Moment $\left(P_{\underline{n}}>P_{\underline{n}}\right)$

The moment M_{n} is given and it is known that the compression failure will occur by crushing of concrete. Load P_{n} is to be found out and the strength reduction factor (ϕ) will be 0.65 for tied columns.
$f_{\mathrm{s}}<f_{\mathrm{y}}$
Assume that the compression steel is yielding, $f_{\mathrm{s}}{ }^{\prime}=f_{\mathrm{y}}$.
Step 1: \quad Find out f_{s} in terms of ' a '.

$$
f_{\mathrm{s}}=600 \frac{\beta_{1} d-a}{a}
$$

Step 2: \quad Calculate ' a ' from the moment equation.

$$
\begin{aligned}
M_{\mathrm{n}}= & 0.85 f_{\mathrm{c}}^{\prime} b a\left(d-d^{\prime \prime}-a / 2\right)+A_{\mathrm{s}}^{\prime} f_{\mathrm{y}}\left(d-d^{\prime \prime}-d\right) \\
& +A_{\mathrm{s}} 600 \frac{\beta_{1} d-a}{a}\left(d^{\prime \prime}\right)
\end{aligned}
$$

Step 3: \quad The yielding of compression steel is checked as under:

$$
\varepsilon_{\mathrm{s}}^{\prime}=0.003 \frac{a-\beta_{1} d^{\prime}}{a}
$$

$$
f_{\mathrm{s}}^{\prime}=600 \frac{a-\beta_{1} d^{\prime}}{a} \leq f_{\mathrm{y}}
$$

If the compression steel is not yielding, an expression for f_{s}^{\prime} is formulated in terms of ' a ' and the value of ' a ' is again calculated.

Step 4: \quad Calculate f_{s} and f_{s}^{\prime} (if compression steel is not yielding).
Step 5:
Calculate the nominal load from the load equation.

$$
P_{\mathrm{n}}=0.85 f_{\mathrm{c}}^{\prime} b a+A_{\mathrm{s}}^{\prime} f_{\mathrm{s}}^{\prime}-A_{\mathrm{s}} f_{\mathrm{y}}
$$

Step 6:
For compression failure, $\phi=0.65$.

Case 11 - Position Of N.A. (c - Value) Is Given

When the value of depth of neutral axis (c) is known, the analysis becomes straightforward.

Both tension and compression steel stresses can easily be found.

The collapse load is then calculated from the load equation and collapse moment from the moment equation.

This case is always used to plot interaction diagrams.
A number of different values of ' c ' may be assumed between 0 and h, and the corresponding points are plotted to get the required curve.

Step 1: \quad Calculate the value of ' a ' from the given value of ' c '.
Step 2: \quad The tension and compression steel stresses along with the tension steel strain are calculated as follows:

$$
\begin{aligned}
f_{\mathrm{s}} & =600 \frac{\beta_{1} d-a}{a} \leq f_{\mathrm{y}} \\
f_{\mathrm{s}}^{\prime} & =600 \frac{a-\beta_{1} d^{\prime}}{a} \leq f_{\mathrm{y}} \\
\varepsilon_{\mathrm{s}} & =0.003 \frac{\beta_{1} d-a}{a}
\end{aligned}
$$

Step 3: \quad Calculate ϕ factor based on the tension steel strain.

Step 4: Calculate the nominal load from the load equation.

$$
P_{\mathrm{n}}=0.85 f_{\mathrm{c}}^{\prime} b a+A_{\mathrm{s}}^{\prime} f_{\mathrm{s}}^{\prime}-A_{\mathrm{s}} f_{\mathrm{s}}
$$

Step 5: The value of moment capacity M_{n} is calculated from the moment equation.

$$
\begin{aligned}
M_{\mathrm{n}} & =P_{\mathrm{n}} \times \mathrm{e}=0.85 f_{\mathrm{c}}^{\prime} b a\left(d-d^{\prime \prime}-a / 2\right) \\
& +A_{\mathrm{s}}^{\prime} f_{\mathrm{y}}\left(d-d^{\prime \prime}-d^{\prime}\right)+A_{\mathrm{s}} f_{\mathrm{s}}\left(d^{\prime \prime}\right)
\end{aligned}
$$

Example 14.1: A reinforced concrete short column has a cross-sectional size of $450 \times 300 \mathrm{~mm}$ and is loaded as shown in Fig. 14.13. It is reinforced by 6 bars of Grade 300 , each having an area of $510 \mathrm{~mm}^{2} . f_{c}{ }^{\prime}=25 \mathrm{MPa}$ and f_{y} $=300 \mathrm{MPa}$. Analyze the column for the following conditions:

1) Pure axial load
2) Balanced condition
3) $P_{u}=1300 \mathrm{kN}$
4) $e=300 \mathrm{~mm}$

Fig. 14.13.Column Cross-Section For Example 14.1.

Solution:

Location Of Plastic Centroid: By symmetry, the plastic centroid of the given section coincides with the geometric centroid.

1- Pure Axial Load ($e=0$)

$$
\begin{aligned}
P_{\mathrm{no}} & =0.85 f_{\mathrm{c}}^{\prime} A_{\mathrm{g}}+A_{\mathrm{st}}\left(f_{\mathrm{y}}-0.85 f_{\mathrm{c}}^{\prime}\right) \\
& =\quad[0.85(25)(300 \times 450) \\
& \quad+6(510)(300-0.85 \times 25)] / 1000 \\
& =3721.7 \mathrm{kN}
\end{aligned}
$$

2- Balanced Condition
(-) P_{n}

Strain Diagram

Fig. 14.14. Strain and Stress Diagrams For Case-2.

$$
\begin{aligned}
\varepsilon_{\mathrm{y}} & =300 / 200,000 \quad=0.0015 \\
c_{\mathrm{b}} & =\frac{600}{600+f_{y}} d=\frac{600}{900}(375)=250 \mathrm{~mm} \\
a_{\mathrm{b}} & =\beta_{1} c_{\mathrm{b}}=0.85(250)=212.5 \mathrm{~mm} \\
\varepsilon_{\mathrm{s}}^{\prime} & =\frac{c_{b}-75}{c_{b}}(0.003)=0.0021>\quad \varepsilon_{\mathrm{y}}
\end{aligned}
$$

(Compression steel is yielding)
Internal forces

$$
\begin{aligned}
C_{\mathrm{c}} & =0.85 f_{\mathrm{c}}^{\prime} a_{\mathrm{b}} b=0.85(25)(212.5)(300) / 1000 \\
& =1354.7 \mathrm{kN}
\end{aligned}
$$

$$
\begin{aligned}
C_{\mathrm{s}}^{\prime} & =3 A_{\mathrm{b}}\left(f_{\mathrm{y}}-0.85 f_{\mathrm{c}}^{\prime}\right) \\
& =3(510)(300-0.85 \times 25) / 1000 \\
& =426.5 \mathrm{kN} \\
T & =3 A_{\mathrm{b}} f_{\mathrm{y}}=3(510)(300) / 1000 \\
& =459.0 \mathrm{kN}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \quad P_{\mathrm{nb}} & =C_{\mathrm{c}}+C_{\mathrm{s}}^{\prime}-T \\
& =1354.7+426.5-459.0=1322.2 \mathrm{kN} \\
M_{\mathrm{nb}} & =\sum M_{\mathrm{P} . \mathrm{C} .} \\
& =C_{\mathrm{c}}\left(225-a_{\mathrm{b}} / 2\right)+C_{\mathrm{s}}^{\prime}(150)+T(150) \\
& =(1354.7)(0.119)+(426.5)(0.15) \\
& =+(459.0)(0.15) \\
& =294.0 \mathrm{kN}-\mathrm{m}
\end{aligned}
$$

$$
e_{\mathrm{b}} \quad=\quad M_{\mathrm{nb}} / P_{\mathrm{nb}}=222 \mathrm{~mm}
$$

3- $\quad \underline{P}_{\underline{u}}=1300 \mathrm{kN}$

$$
P_{\mathrm{n}}=P_{\mathrm{u}} / \phi=1300 / 0.65=2000 \mathrm{kN}
$$

(The strength reduction factor (ϕ) is 0.65 for a tied column in case of compression failure)
$P_{n} \quad>P_{n b} \quad \Rightarrow$ compression failure is confirmed
$\therefore \quad f_{s}<f_{y}$
Assume $f_{s}^{\prime}=f_{y}$
Step 1:

$$
f_{s}=600 \frac{\beta_{1} d-a}{a}=600 \frac{0.85 \times 375-a}{a}
$$

Step 2:

$$
\begin{gather*}
P_{n}=0.85 f_{c}^{\prime} b a+A_{s}^{\prime}\left(f_{y}-0.85 f_{c}^{\prime}\right)-A_{s} f_{s} \\
2,000,000= \\
\quad(0.85)(25)(300)(a)+(1530)(278.75) \\
\\
\quad-1530 \times 600 \frac{0.85 \times 375-a}{a} \\
2000 a=6.375 a^{2}+426.488 a-292612.5+918 a \\
a^{2}-102.83 a-45900=0 \tag{OK}\\
a \quad= \\
\begin{aligned}
& a \\
& c \quad 271.74 \mathrm{~mm} \\
& c \quad(\mathrm{O}
\end{aligned}
\end{gather*}
$$

Step 3:

$$
\begin{aligned}
f_{s}^{\prime} & =600 \frac{a-\beta_{1} d^{\prime}}{a} \\
& =600 \frac{271.74-0.85 \times 75}{271.74} \\
& =459.2 \mathrm{MPa}>\quad f_{y}
\end{aligned}
$$

$\therefore \quad$ The compression steel is yielding.

Step 4:

$$
\begin{aligned}
f_{s} & =600 \frac{0.85 \times 375-a}{a} \\
& =600 \frac{0.85 \times 375-271.74}{271.74}=103.80 \mathrm{MPa}
\end{aligned}
$$

Step 5:

$$
\begin{aligned}
M_{\mathrm{n}}=\quad & 0.85 f_{\mathrm{c}}^{\prime} b a\left(d-d^{\prime \prime}-a / 2\right) \\
=\quad & +A_{\mathrm{s}}^{\prime}\left(f_{y}-0.85 f_{c}^{\prime}\right)\left(d-d^{\prime \prime}-d^{\prime}\right)+A_{\mathrm{s}} f_{\mathrm{s}}\left(d^{\prime \prime}\right) \\
= & {[(0.85)(25)(300)(271.74)(375-150} \\
& -271.74 / 2)+(1530)(278.75)(375-150 \\
= & -75)+(1530)(103.80)(150)] / 10^{6} \\
= & 242.20 \mathrm{kN}-\mathrm{m}
\end{aligned}
$$

4- $\underline{e}=\mathbf{3 0 0} \mathrm{mm}$
$e>e_{\mathrm{b}} \quad$ means $\quad P_{\mathrm{n}}<P_{\mathrm{nb}}$
\Rightarrow tension failure
$\begin{array}{lll}\therefore \quad f_{\mathrm{s}} & =f_{\mathrm{y}} \\ \text { Assume } f_{\mathrm{s}}^{\prime} & = & \\ f_{\mathrm{y}}\end{array} \quad$ (to be checked later)

Step 1:
The nominal load capacity P_{n} is calculated in terms of ' a ' as follows:

$$
\begin{aligned}
P_{\mathrm{n}} & =0.85 f_{\mathrm{c}}^{\prime} \mathrm{ba}+A_{\mathrm{s}}^{\prime}\left(f_{y}-0.85 f_{c}^{\prime}\right)-A_{\mathrm{s}} f_{\mathrm{y}} \\
& =(0.85)(25)(300)(a)+(1530)(278.75) \\
& =6375 a-32513
\end{aligned}
$$

Step 2: \quad The value of P_{n} is used in the expression for moment and the value of ' a ' is calculated by solving the resulting equation in terms of ' a '.

$$
\begin{aligned}
P_{\mathrm{n}} \times e= & 0.85 f_{\mathrm{c}}^{\prime} b a\left(d-d^{\prime \prime}-a / 2\right) \\
& +A_{\mathrm{s}}^{\prime}\left(f_{y}-0.85 f_{c}^{\prime}\right)\left(d-d^{\prime \prime}-d^{\prime}\right)+A_{\mathrm{s}} f_{\mathrm{y}} d^{\prime \prime}
\end{aligned}
$$

$$
\begin{aligned}
(6375 a-32513)(300)= & (6375)(a)[375-150-a / 2] \\
& +(1530)(278.75)[375-150 \\
& -75]+(1530)(300)(150)
\end{aligned}
$$

$$
a^{2}+150 a-44730=0 \quad a \quad=149.4 \mathrm{~mm}
$$

Step 3:

$$
\begin{aligned}
& \varepsilon_{\mathrm{s}}^{\prime} \quad=\quad 0.003 \frac{a-\beta_{1} d^{\prime}}{a} \\
& =\quad 0.003 \frac{149.4-0.85 \times 75}{149.4}=0.00172 \\
& >\varepsilon_{\mathrm{y}} \quad(\text { OK })
\end{aligned}
$$

Step 4:

$$
\begin{aligned}
P_{\mathrm{n}} & =0.85 f_{\mathrm{c}}^{\prime} b a+A_{\mathrm{s}}^{\prime} f_{\mathrm{y}}-A_{\mathrm{s}} f_{\mathrm{y}} \\
& =[(6375)(149.4)+(1530)(278.75) \\
& =-(1530)(300)] / 1000 \\
& =919.9 \mathrm{kN} \\
M_{\mathrm{n}} & =P_{\mathrm{n}} \times e \\
& =919.9 \times 300 / 1000=275.97 \mathrm{kN}-\mathrm{m}
\end{aligned}
$$

Step 5:

$$
\begin{aligned}
\varepsilon_{s} & =0.003 \frac{\beta_{1} d-a}{a} \\
& =0.003 \frac{0.85 \times 375-149.4}{149.4}=0.0034
\end{aligned}
$$

$$
\begin{aligned}
\phi & =0.65+\frac{0.25}{0.005-\varepsilon_{y}}\left(\varepsilon_{t}-\varepsilon_{y}\right) \\
& =0.65+\frac{0.25}{0.005-0.0015}(0.0034-0.0015)=0.79
\end{aligned}
$$

Example 14.2: A reinforced concrete short column has a cross-sectional size of $450 \times 300 \mathrm{~mm}$ and is loaded as shown in Fig. 14.15. It is reinforced by 6 bars of Grade 300, each having an area of 510 $\mathrm{mm}^{2} . f_{c}{ }^{\prime}=25 \mathrm{MPa}$ and $f_{y}=300 \mathrm{MPa}$. Construct an approximate $\mathrm{P}-\mathrm{M}$ interaction diagram.
(c) P_{n}

Fig. 14.15.Column Cross-Section For Example 14.2.

Solution:

Location Of Plastic Centroid: By symmetry, the plastic centroid of the given section coincides with the geometric centroid.

Nominal Capacities:
1- Pure Axial Load ($e=0$)

$$
\begin{aligned}
P_{\text {no }} & =0.85 f_{\mathrm{c}}^{\prime} A_{\mathrm{g}}+A_{\text {st }}\left(f_{\mathrm{y}}-0.85 f_{\mathrm{c}}^{\prime}\right) \\
& =[0.85(25)(300 \times 450)+6(510)(300 \\
& =3.85 \times 25)] / 1000 \\
& =3721.7 \mathrm{kN}
\end{aligned}
$$

2- Balanced Condition
© P_{n}

$$
\begin{aligned}
\varepsilon_{\mathrm{y}} & =300 / 200,000 \quad 0.0015 \\
c_{\mathrm{b}} & =\frac{600}{600+f_{y}} d=\frac{600}{900}(375) \\
& =250 \mathrm{~mm} \quad>\frac{h}{2}=225 \mathrm{~mm}
\end{aligned}
$$

This means that the central layer of steel is in compression.

$$
\begin{aligned}
& a_{\mathrm{b}}=\beta_{1} c_{\mathrm{b}}=0.85(250)=212.5 \mathrm{~mm} \\
& \varepsilon_{1}=\frac{c_{b}-75}{c_{b}}(0.003)=0.0021
\end{aligned}
$$

$>\quad \varepsilon_{\mathrm{y}} \quad$ (Compression steel is yielding)

$$
\varepsilon_{2}=\frac{c_{b}-225}{c_{b}}(0.003)=0.0003
$$

Internal forces

$$
\begin{aligned}
C_{\mathrm{c}} & =0.85 f_{\mathrm{c}}^{\prime} a_{\mathrm{b}} b \\
& =0.85(25)(212.5)(300) / 1000 \\
& =1354.7 \mathrm{kN} \\
C_{\mathrm{s} 1} & =2 A_{\mathrm{b}}\left(f_{\mathrm{y}}-0.85 f_{\mathrm{c}}^{\prime}\right) \\
& =2(510)(300-0.85 \times 25) / 1000 \\
& =284.3 \mathrm{kN} \\
C_{\mathrm{s} 2} & =2 A_{\mathrm{b}} \varepsilon_{2} E_{\mathrm{s}} \\
& =2(510)(0.0003)(200,000) / 1000=61.2 \mathrm{kN} \\
T & =2 A_{\mathrm{b}} f_{\mathrm{y}}=2(510)(300) / 1000=306.0 \mathrm{kN}
\end{aligned}
$$

$$
\begin{aligned}
\therefore P_{\mathrm{nb}} & =C_{\mathrm{c}}+\mathrm{C}_{\mathrm{s} 1}+\mathrm{C}_{\mathrm{s} 2}-T \\
& =1354.7+284.3+61.2-306.0 \\
& =1394.2 \mathrm{kN} \\
M_{\mathrm{nb}} & =\sum M_{\mathrm{P} . \mathrm{C} .} \\
& =C_{\mathrm{c}}\left(225-a_{\mathrm{b}} / 2\right)+C_{\mathrm{s} 1}(150)+C_{\mathrm{s} 2}(0) \\
& +T(150) \\
& =(1354.7)(0.119)+(284.3)(0.15)+0 \\
& =(306.0)(0.15) \\
& =249.8 \mathrm{kN}-\mathrm{m}
\end{aligned}
$$

3- At Failure Having $\varepsilon_{\underline{s}}=\mathbf{0 . 0 0 5}$
$\begin{array}{ll}\varepsilon_{\mathrm{S}} & =0.005 \\ c & =0.375 d \quad=0.375(375)=140.6 \mathrm{~mm}\end{array}$

$$
\begin{array}{ll}
a & =0.85 \times 140.6=119.5 \mathrm{~mm} \\
c & <h / 2
\end{array}
$$

\therefore Central layer of steel is in tension

$$
\begin{aligned}
\varepsilon_{s 1} & =(0.003) \frac{c-75}{c}=0.0014<\varepsilon_{\mathrm{y}} \\
f_{s 1} & =\varepsilon_{s 1} \times E_{\mathrm{s}}=280 \mathrm{MPa} \\
\varepsilon_{2} & =(0.003) \frac{225-c}{c}=0.0018 \\
& \therefore \quad \text { Yielding in tension }
\end{aligned}
$$

$$
f_{s 2}=300 \mathrm{MPa}
$$

$$
\begin{aligned}
P_{\mathrm{n}} & = \\
& 0.85 f_{\mathrm{c}}^{\prime} b a+A_{\mathrm{s} 1}\left(f_{\mathrm{s} 1}-0.85 f_{\mathrm{c}}^{\prime}\right)-A_{\mathrm{s} 2} \times f_{\mathrm{s} 2} \\
= & -A_{\mathrm{s} 3} \times f_{\mathrm{y}} \\
= & {[0.85 \times 25 \times 300 \times 119.5+1020 \times(280} \\
& -0.85 \times 25)-1020 \times 300-1020 \times 300] / 1000 \\
& 413.7 \mathrm{kN}
\end{aligned}
$$

$$
\begin{aligned}
M_{\mathrm{n}}= & 0.85 f_{\mathrm{c}}^{\prime} b a\left(d-d^{\prime \prime}-a / 2\right)+A_{\mathrm{s} 1} f_{\mathrm{s} 1}\left(d-d^{\prime \prime}\right. \\
= & \left.-d^{\prime}\right)+A_{\mathrm{s} 2} f_{\mathrm{s} 2}(0)+A_{\mathrm{s} 3} f_{\mathrm{y}}\left(d^{\prime \prime}\right) \\
= & {[761812.5 \times(375-150-119.5 / 2)} \\
& +263925 \times(375-150-75)+0 \\
= & +306000(150)] / 10^{6} \\
= & 211.4 \mathrm{kN}-\mathrm{m}
\end{aligned}
$$

4- Pure Flexure

In this case, no axial load is applied.
The load equation reduces to the condition that the internal tension must be equal to the internal compression.

The strain and internal force diagrams are shown in Fig. 14.17, where the location of the N.A. is assumed to be between the top and center layers of steel.
© P_{n}

Fig. 14.17. Strain and Stress Diagrams For Case-4.

$$
\begin{aligned}
\varepsilon_{1} & =\frac{c-75}{c}(0.003) \\
\varepsilon_{2} & =\frac{225-c}{c}(0.003)
\end{aligned}
$$

$$
\begin{aligned}
C_{\mathrm{s} 1}= & 1020 \times 0.003 \times \frac{c-75}{c} \times 200,000 \\
& -1020 \times 0.85 \times 25 \\
= & 612,000 \frac{c-75}{c}-21,675 \\
C_{\mathrm{c}}= & 0.85 f_{\mathrm{c}}^{\prime}\left(\beta_{1} c\right) b \\
= & 0.85 \times 25 \times 0.85 \times c \times 300=5419 \mathrm{c} \\
T_{2}= & 2 A_{\mathrm{b}} \varepsilon_{1} E_{\mathrm{s}} \\
= & 2 A_{\mathrm{b}} f_{\mathrm{y}}=1020 \times 300=306,000 \mathrm{~N} \\
T_{3}= & 2 A_{\mathrm{b}} f_{\mathrm{y}}=1020 \times 300=306,000 \mathrm{~N}
\end{aligned}
$$

$$
\begin{aligned}
& \Sigma C=\Sigma T \Rightarrow \\
& 612,000 \frac{c-75}{c}-21,675+5419 c=306,000+306,000 \\
& 612,000 c-45,900,000-21,675 c+5419 c^{2}=612,000 \\
& 5419 c^{2}-21,675 c-45,900,000=0 \\
& c \quad=94.055 \mathrm{~mm} \\
& \therefore \text { N.A. lies in-between } \\
& \text { steel-1 and steel-2 } \\
& \varepsilon_{1}=\frac{c-75}{c}(0.003)=0.00061 \\
& \varepsilon_{2}=\frac{225-c}{c}(0.003)=0.00418 \\
& \therefore \quad \text { Steel No. } 2 \text { is yielding }
\end{aligned}
$$

$$
\begin{align*}
C_{\mathrm{s} 1} & =102.314 \mathrm{kN} \\
C_{\mathrm{c}} & =509.686 \mathrm{kN} \\
P_{\mathrm{n}} & = \\
& =C_{\mathrm{s} 1}+C_{\mathrm{c}}-T_{2}-T_{3} \tag{O.K.}\\
& 509.686+102.314-2 \times 306=0 \quad(\boldsymbol{O} . \boldsymbol{K} .) \\
M_{\mathrm{no}} & =C_{\mathrm{s} 1}(225-75) / 1000+C_{\mathrm{c}}\left(225-\frac{0.85 \times 94.055}{2}\right) \\
& / 1000+T_{2}(0)+T_{3}(150) / 1000 \\
& =155.6 \mathrm{kN}-\mathrm{m}
\end{align*}
$$

Ultimate Capacities

Case - I: $\quad \phi P_{\mathrm{no}}=\quad 0.65(3721.7)=2419 \mathrm{kN}$
(without additional factor of safety)
$(0.80) \phi P_{\mathrm{no}}=1935 \mathrm{kN}$
Case - II: $\quad \phi M_{\mathrm{n}}=0.65(249.8)=162.4 \mathrm{kN}-\mathrm{m}$;

$$
\phi P_{\mathrm{n}}=0.65(1394.2)=906 \mathrm{kN}
$$

Case - III: $\quad \phi M_{\mathrm{n}}=0.90(214.6)=193.1 \mathrm{kN}-\mathrm{m}$;

$$
\phi P_{\mathrm{n}}=0.90(435.4)=392 \mathrm{kN}
$$

Case - VI: $\quad \phi M_{\mathrm{n}}=0.90(155.6)=140.0 \mathrm{kN}-\mathrm{m}$;

$$
\phi P_{\mathrm{n}}=0 \mathrm{kN}
$$

The approximate nominal and design interaction curves are obtained by plotting these points on scale such as in Fig. 14.18.

Fig. 14.18. Approximate Interaction Curves For Example 14.2.

DESIGN OF RECTANGULAR SHORT COLUMNS HAVING UNIAXIAL ECCENTRICITY USING FORMULAS

Step 1: \quad First investigate the balanced condition.
$A_{\mathrm{s}}=A_{\mathrm{s}}{ }^{\prime} \quad$ Assume that the compression steel is
yielding for the balanced condition $\left(f_{\mathrm{s}}^{\prime}=f_{\mathrm{y}}\right)$.
Calculate a_{b} and check for yielding of the compression steel.

$$
\begin{equation*}
a_{\mathrm{b}} \quad=\quad \beta_{1} d \frac{600}{600+f_{y}} \tag{I}
\end{equation*}
$$

$$
\begin{equation*}
\varepsilon_{\mathrm{s}}^{\prime}=0.003 \frac{a_{b}-\beta_{1} d^{\prime}}{a_{b}} \tag{II}
\end{equation*}
$$

If $\varepsilon_{\mathrm{s}}{ }^{\prime} \geq \varepsilon_{\mathrm{y}}$, the compression steel will be yielding.
Step 2: \quad Calculate $\quad P_{n b}=0.85 f_{c}^{\prime} b a_{b}$ (If both steels are yielding and compression steel stress is assumed to be f_{y} in place of the actual value equal to $f_{\mathrm{y}}-0.85 f_{\mathrm{c}}^{\prime}$)
$\left(P_{\mathrm{ub}}\right)_{\text {design }}=P_{\mathrm{b}}=\phi P_{\mathrm{nb}}=0.65 \times 0.85 f_{c}^{\prime} b a_{b}$
Case I: $\underline{\boldsymbol{P}}_{\underline{\mathrm{u}}}<\boldsymbol{P}_{\underline{\mathrm{b}}}$: Tension Failure
It is known that the tension steel is yielding, $f_{\mathrm{s}}=f_{\mathrm{y}}$.

Step 3: Find approximate value of ϕ.

$$
\begin{equation*}
\phi=0.9-\frac{P_{u}}{4 P_{n b}} \tag{VI}
\end{equation*}
$$

Step 4: Assume the compression steel to be yielding and calculate ' a ' from the following equation.

$$
\begin{equation*}
\frac{P_{u}}{\phi}=0.85 f_{\mathrm{c}}^{\prime} b a \tag{V}
\end{equation*}
$$

Step 5: \quad Check the yielding of compression steel.

$$
\begin{equation*}
f_{\mathrm{s}}^{\prime}=600 \frac{a-\beta_{1} d^{\prime}}{a} \tag{VI}
\end{equation*}
$$

If $f_{\mathrm{s}}^{\prime} \geq f_{\mathrm{y}}$, the compression steel is yielding $\Rightarrow f_{\mathrm{s}}^{\prime}=f_{\mathrm{y}}$.
If $f_{\mathrm{s}}^{\prime}<f_{\mathrm{y}}$, find ' a ' by using procedure of Case II.
Step 6: \quad The value of ϕ may be refined by using the following expressions:

$$
\begin{align*}
\varepsilon_{s} & =0.003 \frac{\beta_{1} d-a}{a} \tag{VII}\\
\phi & =0.65+\frac{0.25}{0.005-\varepsilon_{y}}\left(\varepsilon_{t}-\varepsilon_{y}\right) \tag{VIII}
\end{align*}
$$

Steps 4 and 5 may be revised in case the value of ϕ is significantly different.

Step 7: Taking moments about the plastic centroid, calculate A_{s} and $A_{\mathrm{s}}{ }^{\prime}$.

$$
\begin{aligned}
\frac{P_{u} \cdot e}{\phi}= & 0.85 f_{\mathrm{c}}^{\prime} b a\left(d-d^{\prime \prime}-a / 2\right) \\
& +A_{\mathrm{s}}^{\prime} f_{\mathrm{y}}\left(d-d^{\prime \prime}-d^{\prime}\right)+A_{\mathrm{s}} f_{\mathrm{y}} d^{\prime \prime}
\end{aligned}
$$

For symmetrical sections having same steel and covers on both the sides,

$$
\begin{aligned}
A_{\mathrm{s}} & =A_{\mathrm{s}}^{\prime} \quad=\quad A_{\mathrm{st}} / 2 \\
d-d^{\prime \prime} & = \\
\text { and } d^{\prime \prime} & =h / 2 \\
& h / 2-d^{\prime}
\end{aligned}
$$

$$
\begin{equation*}
\frac{P_{u} \cdot e}{\phi}=0.85 f_{\mathrm{c}}^{\prime} b a\left(\frac{h}{2}-\frac{a}{2}\right)+A_{\mathrm{st}} f_{\mathrm{y}}\left(\frac{h}{2}-d^{\prime}\right) \tag{IX}
\end{equation*}
$$

Case II: $\underline{P}_{\underline{\mathrm{u}}}<\boldsymbol{P}_{\underline{\mathrm{b}}}$: Compression Failure

Exact calculations are lengthy for compression failure as compared with tension failure.

However, the compression steel will nearly always be yielding in such cases.

The factor ϕ is always 0.65 for tied columns for compression failure.

Step 3: From the strain diagram, calculate f_{s} in terms of ' a '.

$$
\begin{equation*}
f_{\mathrm{s}}=600 \frac{\beta_{1} d-a}{a} \tag{X}
\end{equation*}
$$

Step 4: \quad Calculate $A_{\text {st }}$ in terms of ' a ' from the load equation.

$$
\begin{aligned}
& \frac{P_{u}}{\phi}=0.85 f_{\mathrm{c}}^{\prime} b a+A_{\mathrm{s}}^{\prime} f_{\mathrm{y}}-A_{\mathrm{s}} f_{\mathrm{s}} \\
& \frac{P_{u}}{\phi}=0.85 f_{\mathrm{c}}^{\prime} b a+\frac{A_{s t}}{2} f_{\mathrm{y}}-\frac{A_{s t}}{2} \times 600 \frac{\beta_{1} d-a}{a}
\end{aligned}
$$

$$
\begin{equation*}
A_{\mathrm{st}}=f_{1}(a) \tag{XII}
\end{equation*}
$$

Step 5: Calculate $A_{\text {st }}$ in terms of ' a ' from the moment equation.

$$
\begin{align*}
\frac{P_{u} \cdot e}{\phi} & =0.85 f_{\mathrm{c}}^{\prime} b a\left(\frac{h}{2}-a / 2\right)+\frac{A_{s t}}{2} f_{\mathrm{y}}\left(\frac{h}{2}-d^{\prime}\right) \\
& +\frac{A_{s t}}{2} 600 \frac{\beta_{1} d-a}{a}\left(\frac{h}{2}-d^{\prime}\right) \tag{XIII}\\
A_{s t} & =f_{2}(a)
\end{align*}
$$

(XIV)

Step 6: \quad Equate $A_{\text {st }}$ calculated in steps 4 and 5 to form a cubic equation in terms of ' a '.
Solve this equation to calculate the value of
' a '.

$$
f_{1}(a)=f_{2}(a)
$$

Step 7: \quad Calculate $A_{\text {st }}$ from Eq. XII or XIV.

