
First Approximate Method Of Design For 
Compression Failure

Step 3: Calculate eb from the moment equation in 
terms of Ast.

Pnb × eb =  0.85 fc′bab + 
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For symmetric sections, h/2 − d′ = d″

Pnb × eb =  0.85 fc′bab + Ast fy                      (XVI)
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Step 4: Calculate Po in terms of Ast.

Po = φ [0.85 fc′ (Ag − Ast) + Ast fy] (XV)



Step 5: The interaction diagram in the compression 
region is assumed to be a straight line from 
the safe purely axial load point (Po) to safe 
balanced point (Pb).
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Fig. 14.19.  Approximate Design Interaction Curve For Compression Region.
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The values of Po and Pb may be put in terms of Ast to 
form a quadratic equation in terms of Ast.  

The resulting equation may be solved for the unknown 
steel area.  

However, the solution is still lengthy and difficult to 
solve for design.



Whitney’s Empirical Equation

Assumptions:

The column has a rectangular cross-section with 
reinforcement placed in two layers parallel to the axis of 
bending at equal distances from this axis.

The compression reinforcement has yielded.  This is true 
for small eccentricities.

The area of concrete displaced by the compression steel 
may be neglected.



A straight line can represent the interaction diagram 
for compression failures starting from the point 
corresponding to the pure axial load capacity Pno to 
the point corresponding to a balanced failure.

The depth of the compression stress block for a 
balanced failure is ab = β1cb.

From strain compatibility, assuming that fc′ ≤ 28 MPa
and fy = 420 MPa, we get,

ab = β1 d
yf+600

600

= 0.85                 d ≅ 0.50 d
420600

600
+



Summing the moments about the tension reinforcement 
at balanced stage gives the following:

Pnb = Cs′ (d − d′ ) +  Cc (d − ab/2)
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This equation is basically valid for balanced failure.  

To make it valid for smaller eccentricities, the above 
equation is forced to pass through the value of Pno at e = 0.  

Also to make it a general equation, e is used in place of eb
and Pn is used in place of Pnb.

For e = 0, Eq. XVII gives:

Pno = + 2As′ fy (XVIII)( )
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Actually, Pno = 0.85fc′ b h +  2As′ fy (XVIV)

Comparing Eqs. XVIII and XVIV,
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Pu = φPn for fy = 420 MPa 



In general, the formula for all grades of steel becomes:
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whereα = 0.408 − 0.00021 fy

Example 14.3: A 375×450 mm tied column is to be 
reinforced symmetrically by bars placed in two opposite 
faces of the section. fc′ = 20 MPa, fy = 420 MPa, d′ = 65 
mm and d = 450 − 65 = 385 mm. Determine the steel 
areas required for the column to support the following 
ultimate loads:

1. 675 kN at e =   450 mm, 2. 1180 kN at e = 200 mm.



Solution:

ab = β1 d = 192.5 mm
yf+600

600

εs′ (balanced condition) = (0.003)
b

b

a
da ′− 1β

= 0.00214  >          = 0.0021
s

y

E
f

∴ Compression steel is yielding at balanced stage,

fs′ = fy

Pnb ≈ 0.85×200×375×192.5 + As′ fy − As fy
= 1227.2 kN 



Pb = 0.65 Pnb  = 797.7 kN 

1. Pu = 675 kN, e = 450 mm

Pu < Pb ⇒ tension failure    ⇒ fs = fy

φappr. =
nb

u

P
P

4
9.0 −

= =  0.76
2.12274

6759.0
×

−

Assuming fs′ = fy, the load equation becomes:

= 0.85 × 20 × 375 a ∴ a = 139.3 mm76.0
675000



εs′ = 0.003                  =  0.00181 < εya
da ′− 1β

∴ Compression steel is not yielding.

Let fs′ =  (εs′ Es + Previous fs′ ) / 2
=  (0.00181 × 200,000 + 420) / 2 =  391 MPa 

From the moment equation about the plastic centroid,

=  0.85 (20)(375)(139.3)(225 − 139.3/2) 

+       (391)(225 − 65) +        (420)(225 − 65)

76.0
450675000×

2
stA

2
stA

Ast =  4034 mm2



2nd Trial

=  0.85 × 20 × 375 a +         (391) − (420)
76.0

675000
2

4034
2

4034

∴ a = 148.5 mm

εs′ = 0.003                   =  0.00188 < εya
da ′− 1β

∴ Compression steel is not yielding.

Let fs′ =  (εs′ Es + Previous fs′ ) / 2

=  (0.00188 × 200,000 + 391) / 2 =  384 MPa

From the moment equation about the plastic centroid,
we get:



=  0.85 (20)(375)(148.5)(225 − 148.5/2) 

+       (384)(225 − 65) +         (420)(225 − 65)

76.0
450675000×

2
stA

2
stA

Ast =  3995 mm2

3rd Trial

=  0.85 × 20 × 375 a +           (384) − (420)
76.0

675000
2

3995
2

3995

∴ a = 150.6 mm

εs′ = 0.003 =  0.00190 < εya
da ′− 1β

∴ Compression steel is not yielding.



Let fs′ =  (εs′ Es + Previous fs′ ) / 2

=  (0.00190 × 200,000 + 384) / 2 =  382 MPa

From the moment equation about the plastic centroid,

=  0.85 (20)(375)(150.6)(225 − 150.6/2) 

+         (382)(225 − 65) +         (420)(225 − 65)

76.0
450675000×

2
stA

2
stA

Ast =  3989 mm2

4th Trial

Ast =  3990 mm2



As an alternate, exact solution may be carried out 
following almost the same procedure as that for the 
compression failure.

εs = 0.003                     =  0.00349a
ad −1β

φ = =  0.77)(
005.0

25.065.0 yt
y

εε
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This value is sufficiently close to the assumed value, and 
is on the safe side.

2. Pu = 1180 kN, e = 200 mm

Pu > Pb ⇒ φ =  0.65



A. EXACT SOLUTION

Assuming the compression to be yielding, the load 
equation may be written as follows:
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From moment equation, we get,
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From Eqs. I and II:

F(a) =  0.00163 a3 − 1.1363 a2 + 452.27 a − 64161 =  0
F′ (a) =  0.00489 a2 − 2.2726 a + 452.27

Assume ao =  h / 2  =  225 mm
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εs′ = 0.003                =  0.00229 > εy

(Compression steel is yielding)

a
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From Eq. I: Ast = 3843 mm2



B. FIRST APPROXIMATE METHOD

Try at home.  Results like those given below will be 
obtained: 
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− 543.2Ast − 15,218,662 =  02
stA

Ast = 4182 mm2 (8.83% greater than actual result)

C. USING WHITNEY’S EQUATION

α = 0.408 − 0.00021 fy
= 0.408 − 0.00021 × 420 =  0.32
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∴ Ast = 3844 mm2

(can be on unsafe side in some cases)



ANALYSIS OF RECTANGULAR COLUMNS
HAVING BARS AT FOUR FACES

For a general bar ‘i’ in the section, from the strain 
diagram of Fig. 14.20,

εsi =  0.003             ; di <  c ⇒ Compressive strains 
denoted by negative signc

cdi −

di >  c ⇒ Tensile strains denoted by positive sign

The stresses can be calculated according to the following 
three possibilities:

1. If, εsi ≥ , fsi = fy (tensile)
s

y

E
f
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Fig. 14.20.  General Analysis 
of a Short Column.



2. If, εsi ≤ – , fsi = – (fy − 0.85 fc′)
(compressive, exact)s

y

E
f

fsi = – fy (compressive, approximate)

3. Otherwise, fsi = εsi Es + 0.85 fc′
(compressive, exact)

fsi = εsi Es (compressive, approximate)

Cc =  − 0.85 fc′ a b

Load equation Pn =  − Cc − ∑
=

n

i
sisi Af

1



Moment equation Pn × e

=  − Cc − ( h/2 − di)
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To find out the load carrying capacity of such a column at 
a known eccentricity, trial method is suitable.  The general 
procedure is summarized below:

1.   Select ‘c’ and ‘a’ arbitrarily.
2.   Find fs in all the steel bars.
3.   Calculate Pn from the load equation.



4.  Calculate Pn from the moment equation 
knowing the eccentricity.
5.   Repeat steps 1,2,3 and 4 until the values of Pn
in steps 3 and 4 become the same. 

Example 14.4: The column shown in Fig. 14.21 is 
reinforced with 10 # 25 (US Customary) bars.  Find Pn
and Mn, if the neutral axis is known to be at 500 mm from 
the right face. fc′ = 25 MPa, fy = 520 MPa, d′ = 67.5 mm 
and d = 675 − 67.5 = 607.5 mm.

Solution:
Using strain diagram of Fig. 14.21, Es = 200,000 MPa,  
and c =  500 mm:



εsi =  0.003 ; εy =  0.0026;    

0.85 fc′ = 21.25 MPa 

c
cdi −

675

180 180

Pn375

As4

180

As3 As2 As1

Fig. 14.21.  Column Cross-Section For Example 14.4.



εs1 =  − 0.002595 fs1 =  − 519 MPa (compressive)
εs2 =  − 0.001515 fs2 =  − 303 MPa (compressive)
εs3 =  − 0.000435 fs3 =  − 87 MPa (compressive)
εs4 =  + 0.000645 fs4 =  + 129 MPa (tensile)

d1 =  67.5 mm As1 =  1530 mm2

d2 =  247.5 mm As2 =  1020 mm2

d3 =  427.5 mm As3 =  1020 mm2

d4 =  607.5 mm As4 =  1530 mm2



a = β1c = 425 mm
Cc = 0.85 × (−25) × 375 × 425 / 1000 = − 3386.7 kN 
Fsi = fsi × Asi
Fs1 = (1530) × (− 519) / 1000 = − 794.1 kN 
Fs2 = (1020) × (− 303) / 1000 = − 309.1 kN
Fs3 = (1020) × (− 87) / 1000 = − 88.7 kN
Fs4 = (1530) × (+129) / 1000 = + 197.4 kN

Pn =  − Cc − ∑
=

n

i
sisi Af

1

= 3386.7 + 794.1 + 309.1 + 88.7 − 197.4
≈ 4381 kN 

Mn = Pn × e

=  Cc +                 (di – h/2)
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Mn = [(−3386.7)(212.5 − 337.5) 
+ (−794.1)(67.5 −337.5) + (−309.1)(247.5 −337.5) 
+ (−88.7)(427.5 −337. 5)
+ (197.4)(607.5 −337.5)] / 1000 

= 710.9 kN-m 



BIAXIAL BENDING
In practice many columns are subjected to bending about 
both principal axes simultaneously.  

A typical example is the corner columns of a building.  

A failure surface for axial load (Pn) plus biaxial bending 
(Mnx = Pn ey and Mny = Pn ex) is plotted on the three 
mutually perpendicular axes, exactly analogous to the 
failure line for axial load plus uniaxial bending.  

Any combination of Pu, Mux and Muy falling inside the 
design surface can be applied safely, but any point falling 
outside the surface would represent failure.



ex =  eccentricity of load from the plastic 
centroid parallel to the x-axis

and ey =  eccentricity of load from the plastic 
centroid parallel to the y-axis

Three Types of Interaction Surfaces

1.  Surface plotted for parameters Pn, ex and ey
(Diagram – A of Fig. 14.22).

2.  Surface plotted for parameters 1 / Pn, ex and ey
(Diagram – B of Fig. 14.22). 

3.  Surface plotted for parameters Pn, Mnx and Mny
(Diagram – C of Fig. 14.22). 
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Fig. 14.22.  Typical Interaction Surfaces For Biaxial Bending of Columns.



λ =  eccentricity angle, defined as the angular 
distance of load from the y-axis.

=   =   
ye

e1tan −

nx

ny

M
M1tan −

θ =  counter-clockwise angle of the neutral axis 
with respect to the y-axis.

Analysis and design of column sections having biaxial 
bending are lengthy compared to uniaxial bending cases 
because a trial and adjustment procedure is required to find 
the inclination of the neutral axis, θ, and the depth of 
neutral axis, c, satisfying the equilibrium equations. There 
are two unknowns in this analysis, namely, θ and c, as 
compared to only one unknown in the uniaxial analysis.
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The four possible shapes of the equivalent compressive 
stress block for Case III, are shown in Fig. 14.24.

Case-1 Case-2 Case-3 Case-4

b

h
β1kyhy

x

ky h

kx b

β1kxb Point of Resultant Cc

Fig. 14.24.  Various Concrete Stress Blocks For Biaxial Bending of Columns.



For First Stress Block, we have,

Cc =    =  
2

))()(85.0( 11 bkhkf xyc ββ′
bhkkf yxc

2
1425.0 β′

y=  0.333 β1 kx b     :    =  0.333 β1 ky hx

The strain, stress and force diagrams for any one of these 
cases can be drawn perpendicular to the neutral axis, as 
shown in Fig. 14.25.
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Fig. 14.25.  Strain, Stress and Force Diagrams For 
Biaxial Bending of a Column Section.



The strain, stress and force diagrams for any one of these 
cases can be drawn perpendicular to the neutral axis, as 
shown in Fig. 14.25.

From similar diagrams of the strain diagram, considering 
compressive strains and stresses to be positive, the 
following is obtained:

=  003.0
1sε

c
cs dimension- along N.A. from  of distance 1ε

=  ratio of vertical corresponding distances
The above is true because lines perpendicular to the 
neutral axis and the vertical lines are both intersecting a 
set of parallel lines and hence the ratio between the 
corresponding intercepts must be equal. 
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εs1 =  0.003 
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Let, dxi = horizontal distance of steel from the 
compression face

dyi = vertical distance of steel from the 
compression face

= ty for steels 1 and 2
= h − ty for steels 3 and 4

Then, εsi =  0.003 
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For example,

εs2 =  0.003 
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It is to be noted that the positive strains indicate 
compression.  The stresses in the steel bars are 
calculated as follows:



If εsi ≥ fy / Es, fsi = fy
or if εsi ≤ −fy / Es, fsi =  −fy
else fs1 =  εsi Es

The forces in steel bars are calculated as follows:

Si = Asi fsi

The equilibrium equations are then written as follows to 
calculate the load and the moment capacities:

Pn =  Cc + Σ Si

Mnx = Pn ey =  Cc + Σ Si





 − yh

2 
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Mny = Pn ex =  Cc + Σ Si





 − xb

2






 − xidb

2

The appropriate signs should always be substituted into the 
above equations to get the correct answers.  

The procedure to plot the strength interaction curve for a 
particular value of the eccentricity angle, λ, is as follows:

1.   Neutral axis distance from the most heavily 
compressed corner is selected.

2.   Some value of angle θ is selected.

3.   The concrete stress resultant and its point of 
application are determined by using Eqs. I to III.



4.   Strains are calculated in all the steel bars by 
employing Eq. IV.

5.   Stresses are determined for the conditions of Eq. V.

6.   The values of Pn, Mnx and Mny are evaluated.

7.   The value of λ for this trial is determined as tan-1(Mny /
Mnx).

8.   Steps 2 to 7 are repeated until λ = λt, with some pre-
defined tolerance, which gives one point on the curve.

Calculate Mnλ = and plot the point Pn, Mnλ.
22
nynx MM +



9.   The φ-factor is calculated for the maximum tensile 
strain in any steel bar. If no steel bar is in tension, the 
value of 0.65 is used.
10.   A new value of the neutral axis depth is selected and 
steps 2 to 9 are repeated until full curve is plotted.

APPROXIMATE MEHTODS OF ANALYSIS 
AND DESIGN FOR BIAXIAL BENDING 

Method Of Superposition
In this method, the reinforcement required for the two 
uniaxial bending cases, (Pu, Mux) and (Pu, Muy), is 
calculated separately and is then added to get the design 
for the biaxial bending.



Equivalent Uniaxial Eccentricity Method

The biaxial eccentricities, ex and ey, are replaced by an 
equivalent uniaxial eccentricity, eox, and the column is 
designed for the uniaxial bending case, (Pn, Pn×eox).

If ex / b ≥ ey / h, eox =  ex + α b
h
ey
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This method has certain restrictions.  

Firstly, it is applicable only for columns symmetrical 
about both the axes and the ratio of their sides (b / h) 
lying between 0.5 and 2.0.  

Secondly, the resulting reinforcement is to be placed in 
all the four faces of the column.  

For the cases when the condition ex / b ≥ ey / h is not 
satisfied, either the axes may be interchanged (ex becomes
ey and vice versa) or the equation may be written for eoy.



Bresler Reciprocal Load Method

It is derived from a plane segment inside the interaction 
surface defined by 1/Pn, ex and ey.  

If Pni is the approximate value of the ultimate load in 
biaxial bending case having eccentricities ex and ey, Pnx
is the nominal load strength when only ex is present (ey = 
0), Pny is the nominal load strength when only ey is 
present (ex = 0) and Po is the nominal load strength for 
concentrically loaded column, the following expression 
is used to find the strength corresponding to biaxial 
bending:



onynxni PPPP
1111

−+=

The same equation may be modified for the interaction 
curve with φ-factor as follow:

onynxni PPPP φφφφ
1111

−+=

The value of φPn obtained in this way should not exceed
0.80φPno for tied columns and 0.85φPno for spirally 
reinforced columns.  In the design problems, the trial size 
and reinforcement of the column is selected which is then 
checked to see if Pu ≤ φPn.




