
Load Contour Method

If the interaction diagram is horizontally sliced at a 
particular load level, as done in Fig. 14.27, the resulting 
slice is actually a graph between Mnx and Mny at a constant 
load and is called a load contour.  

The values of the moments, Mnx and Mny, are usually 
normalized with Mnxo (when Mny = 0) and Mnyo (when Mnx
= 0), respectively.  

In this method, a curve of the following form is passed 
through the failure line of a load contour:
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Fig. 14.27.  A Typical Load Contour.
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The constants α1 and α2 are the exponents depending on 
• column dimensions, 
• amount and distribution of steel reinforcement, 
• stress-strain characteristics of steel and concrete, 
• amount of concrete cover and 
• size of lateral ties or spirals.  
Generally, the values of α1 and α2 equal to a constant 
value α give satisfactory results reducing the equation 
to:
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The range of values of α for square and rectangular 
columns is between 1.15 and 1.55 and the lower values of 
α are more conservative.

A value of α = 1.5 is reasonably accurate for the most 
square and rectangular sections having uniformly 
distributed reinforcement.

According to some researchers, the value of α may be 
more accurately obtained in the following form:

α =  log 0.5 / log β



Values of β are given in the form of charts on pages 7-17 
to 7-19 of PCA Notes on ACI-02 against the values of Pu / 
Po and the reinforcement index.

Reinforcement index =

Separate curves are available for various bar arrangements.  

The column must be rectangular with larger to shorter 
sides ratio of less than 4.0, fc′ must be between 12 and 41
MPa, and γ must be between 0.6 and 1.0.

c

y
t f

f
′

ρ



Example 14.5: Select a square tied column cross-
section to resist Pu = 1600 kN, Mux = 95 kN-m and Muy
= 110 kN-m. fc′ = 20 MPa, fy = 300 MPa, and clear 
cover = 40 mm.  Use the following two methods:

a) Equivalent uniaxial eccentricity method
b)  Reciprocal load method.

Solution:
a)  Equivalent Uniaxial Eccentricity Method
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Try 450 × 450 mm column.
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=  68.8 + 0.746 × 59.4 × 450 / 450 =  113.1 mm
Equivalent uniaxial moment is:

Moy = Pu eox =  1600 × 113.1 / 1000 =  180.98 kN-m 

Use uniaxial interaction diagrams with bars in all the four 
faces to determine the total steel ratio, ρt.
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For γ =  0.6 ρt =  0.023
For γ =  0.75 ρt =  0.018

For γ =  0.72
ρt =  0.018 + 0.005 / 0.15 × (0.75 − 0.72) =  0.019

Ast =  ρt × Ag =  0.019 × 4502 =  3848 mm2

(Use 8 − #25 bars)



Reciprocal Load Method

Trial Size: 450 × 450 mm column

Use 8 − #25 bars as the first try.

ρt =  8 × 510 / 4502 =  0.02

=           =  110×106 / 4503 =  1.21 MPa 
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=  1600,000 / 4502 = 7.90 MPa  
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Join this point with the origin and extend to the 2% steel 
curve to get the value of the required capacity.
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⇒ φPnx =  2049 kN
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For γ = 0.60 =  10.6 MPa  
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For γ = 0.75 =  10.75 MPa  
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=  10.72 MPa  for γ = 0.72 ⇒ φPny =  2171 kN
g

ny

A
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The point to calculate φ Pno is located on the diagram 
where the interaction curve for ρ = 0.02 intersects the 
vertical load line.

=  14.70 MPa  ⇒ φPno =  2977 kN 
g
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As the loads φ Pnx and φ Pny are quite closer to φ Pno, φ-
factor of 0.65 seems reasonable for all the loads.
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φ Pni =  1632 kN   > Pu =  1600 kN

Design is OK according to the Reciprocal Load Method.

Example 14.6: Check the adequacy of a rectangular 
tied column X-section of size 300 × 450 mm to resist Pu = 
1000 kN acting at ex = 125 mm and ey = 50 mm, as 
shown in Fig. 14.28. fc′ = 25 MPa, fy = 420 MPa, and 
cover to centroid of bars = 60 mm.  The reinforcement is 
arranged around the perimeter of the column consisting of 
8 − #25 bars.  



Use the following two methods:

a)  Reciprocal load method
b)  Load contour method.
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Fig. 14.28.Column For Example 14.28.
Solution:

ρ t =  4080 / (300 × 450) =  0.03

a)  Reciprocal Load Method

i)  Considering bending about y-axis:
γ =  330 / 450  =  0.73  ≅ 0.75

=  1000 × 1000 / (300 × 450) = 7.41 MPa  
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= 1000 × 1000 × 125 / (300 × 4502)  =  2.06 MPa 
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Join the point [Pu/Ag, Mu/(Agh)] with the origin and 
extend to ρ =  0.03 to get the following:

=  10.8 MPa  ⇒ φPnx =  1458 kN 
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ii)  Considering bending about x-axis:
γ =  180 / 300  =  0.60

=  1000 × 1000 / (300 × 450) = 7.41 MPa  
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=  1000 × 1000 × 50 / (450 × 3002)  =  1.23 MPa 
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Join the point [Pu/Ag, Mu/(Agh)] with the origin and 
extend to ρ =  0.03 to get the following:

=  13.6 MPa  ⇒ φPny =  1836 kN 
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iii)  No eccentricity case:
φPno =  21.4 × 300 × 450 =  2889 kN

Assuming same φ-factors for all the loads, we have,
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φ Pni =  1131 kN   > Pu =  1000 kN (OK)

a)  Load Contour Method

i)  Considering bending about x-axis:
γ =  180 / 300  =  0.60

=  1000 × 1000 / (300 × 450) = 7.41 MPa
g
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ρ t =  0.03
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φMnxo =  2.92 × 450 × 3002 / 106 = 118.26 kN-m

ii)  Considering bending about y-axis:
γ =  320 / 450  =  0.71  ≅ 0.75

=  1000 × 1000 / (300 × 450) = 7.41 MPa
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φMnyo =  3.47 × 300 × 4502 / 106 = 210.80 kN-m 



Mux = Pu × ey =  1000 × 50 / 1000 =  50 kN-m
Muy = Pu × ex =  1000 × 125 / 1000 =  125 kN-m 

Selecting the conservative value of α = 1.15, we have,
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=  0.92  <  1.0     (OK)

Hence the column is safe according to the load contour 
method.  This method is relatively more exact for portion 
of curve below the balanced condition.



SLENDER COLUMNS
There are three methods of design of slender columns 
described below:

1.   Perform exact P − ∆ analysis to find Pu and Mu,max
and then use the standard interaction diagram for the 
short columns.  This method is called the second order 
analysis of frames.

2.   Find Pu and approximately magnified moment (Mu) 
and then use the standard interaction diagram for short 
columns.  This method is called Moment Magnification 
Method.  In this method, the moments obtained from the 
first order analysis are multiplied with an empirical 
moment magnifier.



3.   Modify the interaction diagram to account for the 
slenderness effects, having the coordinates Pu and 
unmagnified moment Mu just like a regular diagram.

Elastic Buckling Load For Concentrically 
Loaded Columns
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Concrete is an inelastic material and hence the modulus 
of elasticity varies all along the stress-strain curve, as 
shown in Fig. 14.29.

By replacing the E-value with the tangent modulus of 
elasticity (Et), Euler’s formula may be used for materials 
like concrete.
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Fig. 14.29.Modulus of Elasticity For Concrete.



The tangent modulus of elasticity is different at all points 
of the stress-strain curve and is difficult to estimate 
precisely.  

Hence approximate methods are used to calculate the 
effective E-value along with the reduced moment of 
inertia due to cracking and long-term effects.  

A typical load − slenderness ratio curve is shown in 
Fig.14.30 to represent the buckling behavior.

For concrete columns, the chances of elastic buckling are 
usually very less and only moment magnification and at 
the most inelastic buckling are the important parameters.  
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Fig. 14.30.  Buckling Load Versus Slenderness Ratio For Columns.



Effective Length Factor
This factor gives the ratio of length of half sine wave 
portion of defected shape after buckling (distance between 
two points of contra-flexure) to full-unsupported length of 
column.  

This depends upon the end conditions of the column and 
the fact that whether side-sway is permitted or not.  Greater 
the k-value, greater is the effective length and slenderness 
ratio and hence smaller is the buckling load.  

The value of k-factor in case of no side-sway is between 
0.5 and 1.0 whereas, in case of appreciable side-sway, it is 
always greater than or equal to 1.0.



Any appreciable lateral or sideward movement of top of 
a vertical column relative to its bottom is called side-
sway, sway or lateral drift.  

If side-sway is possible, k-value increases by a greater 
degree and column buckles at a lesser load.  

Side-sway in a frame takes place due to the following 
factors shown in Fig. 24.31:-
1.   Lengths of different columns are unequal. 
2. Sections of columns have different cross-sectional              

properties. 
3.   Loads are un-symmetrical. 
4.   Lateral loads are acting. 
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Fig. 14.31.  Chances of Side-sway.



Side-sway can be prevented in a frame by:-

1. Providing shear or partition walls.
2. Fixing the top of frame with adjoining rigid 

structures.
3. Provision of properly designed lift well in a building, 

which may act like backbone of the structure reducing 
the lateral deflections.

4. Provision of lateral bracing, which may be of 
following two types:

A.  Diagonal bracing.
B.  Longitudinal bracing.

Effective length factor and the buckled shape of columns 
having well-defined end conditions are given in Fig. 14.32.



Theoretical k = 0.5
Practical k = 0.65
No side-sway

Theoretical k = 1.0
Practical k = 1.0
No side-sway

Inflection 
points

le = kl
le = kl



Theoretical k =1.0
Practical k = 1.2
Side-sway present

Theoretical k = 0.7
Practical k = 0.8
No side-sway

le = kl

le = kl



Theoretical k = 2.0
Practical k = 2.10
Side-sway present

Theoretical k = 2.0
Practical k = 2.0
Side-sway present

le = kl
le = kl

Fig. 14.32.  Values of k-factor For Various End Conditions.



Consider the example of column AB shown in Fig. 
14.33.

The ends are not free to rotate.  

However, these ends are also not perfectly fixed.  

Instead the ends are partially fixed with the fixity 
determined by the ratio of relative flexural stiffness of 
columns meeting at a joint to the flexural stiffness of 
beams meeting at the joint.  

This ratio is denoted by ψ or G using the expression 
given below:-
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Fig. 14.33.  Partially Fixed Column Ends.



ψ or G at each end = ( )
( )
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EI of beams
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This value is calculated at both ends of the columns, 
denoted by points A and B, and summation is taken for all 
members meeting at a particular end.

The lower columns of Fig. 14.33 have their top ends 
partially fixed but the bottom ends may have well-defined 
end conditions.  

The ψ or G value at these ends are decided as follows: 



Hinged Support

G or Ψ = 10.0 for braced columns
= 20.0 for sway columns

Fixed Support

G or Ψ = 0.5 for braced columns
= 1.0 for sway columns

To find out the k-value, the alignment charts given in 
Figs. 14.34 and 14.35 are used.  The alignment chart of 
Fig. 14.34 is for columns without any side-sway and the 
alignment chart of Fig. 14.35 is for columns having 
appreciable side-sway.
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Fig. 14.34.  Effective Length 
Factor For Braced Columns.
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Fig. 14.35.  Effective Length 
Factor For Unbraced Columns.



Restraint Provided By Footings 
For Calculation Of Ψ Factor

In case of footing resting on soil, the Ψ value is 
calculated by using the foundation stiffness (Kf) in place 
of the beam stiffness in the usual expression as under:
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To calculate the stiffness of the footing, a moment M is 
applied to the footing of Fig. 14.36 and the 
corresponding rotation (θ f), settlement at extreme 
compression end due to moment alone leaving the 
uniform downward settlement (∆) and the contact stress 
under the footing due to the rotation (σ) are observed.
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Fig. 14.36.  Rotation and Stiffness of a Foundation.

The extreme edge contact stress may be calculated as 
follows:

σ =  M / Sf =  M y / If

where Sf =  Section modulus of the contact surface
and If =  Moment of inertia of the contact surface.



θ f =    =    =  y
∆

y
K s/σ

sf KI
M

where Ks is the modulus of sub-grade reaction (pressure 
corresponding to 1mm settlement), which may 
approximately be found from Table 14.1.

Table 14.1.  Soil Sub-grade Reaction.

Allowable Soil Bearing Capacity Sub-grade Modulus

kN/m2 or kPa N/mm2/mm

60 0.0136

100 0.0272

180 0.0450

240 0.0504

360 0.0654

480 0.0736
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The value of Ψ at a footing to column joint is estimated 
as follows:
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After calculation of Ψ factors at both ends of the 
column, the value of k may also be calculated from the 
following ACI equations:

For braced members, k should be the lesser of the 
following two values:



k =  0.7 + 0.05 (ΨA +  ΨB)   ≤ 1.0
k =  0.85 + 0.05 Ψmin ≤ 1.0

whereΨmin =  smaller of ΨA and ΨB

For unbraced compression members, k may be evaluated 
as follows:

For    Ψm =    <  2, k =  
2

BA ψψ +
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For unbraced compression members hinged at one end 
and partially fixed at the other end, k-value is obtained 
as follows:

k =  2.0 + 0.3Ψ


