
YIELD LINE ANALYSIS OF SLABS

Yield line analysis of slabs is identical to plastic design 
of frames consisting of skeletal elements.  

In frames, plastic hinges are formed at maximum 
moment sections.  

This means that, at these sections, large inelastic 
rotations may occur at almost constant resisting 
moments.  

This constant resisting moment is called the plastic 
moment.  



After the formation of initial hinges without loosing the 
internal stability of indeterminate structures, more loads 
may be applied due to moment redistribution and 
utilization of strength of less-stressed sections.

Difference of a fictitious plastic hinge from a real hinge is 
that, in case of the plastic hinge, free rotations occur at a 
constant moment level.  

Below the plastic moment value, the rotations are, 
however, locked.  

When sufficient number of these hinges is formed 
adjacent to each other, internal stability of the structure 
causes infinitely larger deformations causing collapse of 
the structure.  



This condition is referred to as the formation of collapse 
mechanism or simply mechanism.

Yield line formation is a similar mechanism that takes 
place in slabs with the difference that the plastic hinges 
concentrated at points are replaced by lines of free 
rotation at constant moments.  

When the slab is loaded beyond a certain limit, a fictitious 
hinge is formed over a certain straight length of the slab 
having maximum moment; this line is called yield line.  

The yield line serves as an axis of rotation for the slab 
segment and large inelastic rotation may occur at nearly 
the same moment per unit length measured along a yield 
line. 



YIELD-LINE PATTERN

When sufficient number of yield-lines is formed such 
that any further load causes very large infinite 
deformations, exceeding the permissible deflection 
limit state, the resulting system is called collapse 
mechanism or simply mechanism or yield-line pattern. 

Plastic moment capacity at a yield line is determined 
by the usual strength or limit state method.  

Yield line forms at the section where the flexural 
reinforcement yields.  



The plastic moment capacity at the yield line is assumed 
equal to the ultimate strength of a section, φbMn, 
distributed over the length (φbmn per unit length of the 
yield line). 

The position and orientation of he yield lines in a yield 
line pattern depends on the boundary conditions, the 
nature of loading and the geometric dimensions. 

The actual analysis of complex systems is either quite 
lengthy or is not possible. 

Hence simplifying assumptions are made to reach at 
reasonably accurate solutions.  



Two general methods may be used for the approximate 
solutions depending upon the nature of the simplifying 
assumptions, namely, lower bound and upper bound 
methods. 

For approximate elastic or plastic analysis, certain 
assumptions are to be made in the procedures.  

Either the moments are distributed in the start depending 
upon experience as in direct design method or the failure 
pattern (collapse mechanism) is assumed in the start as 
in the plastic analysis.  

Both of these starting assumptions may not give the 
actual ultimate load and different trials may be required 
to reach at an answer close to the actual ultimate load. 



Similarly detailed analysis of determinate and 
indeterminate slabs is generally very complicated. 

According to the general theory of plasticity, the true 
ultimate collapse load of a structure lies between two 
limits, an upper bound and a lower bound of the 
collapse load.  

These limits can be found by well-established methods.  
A full solution is obtained when both the upper and 
lower bound solutions converge to a single solution, as 
shown in Fig. 13.1. 
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Fig. 13.1.  Concept of Upper And Lower Bounds.



Lower Bound Method

For a given slab system the lower bound method gives 
an ultimate load, which is either correct or low.  

That is, the ultimate load is never overestimated and 
there is no possibility that the ultimate load is below our 
calculated collapse load.  

The distribution of loads or moments is decided at the 
start depending on the past experience.  

The ultimate load is calculated from the equilibrium 
equations and the postulated distribution of moments.



The lower bound method gives a distribution of 
moments in the slab system at the ultimate load such 
that:

1.  The equilibrium conditions are satisfied at all points 
in the slab system.  

2.  In case of the segment equilibrium method of plastic 
analysis (which is an upper bound solution), the 
equilibrium is satisfied only along the yield lines and 
not within the slab segments.  

Hence, this method is not a complete equilibrium 
solution. 



3.  The yield strength of the slab sections is not 
exceeded anywhere in the slab system. 

4.  The boundary conditions are satisfied.

Upper Bound Method

For a given slab system, the upper bound method gives 
an ultimate load that is either correct or higher than the 
actual value.  

A reasonable collapse mechanism is assumed in the start 
depending on experiments and past experience. 

The ultimate load is calculated from the equilibrium of 
the slab segments separated by the yield lines.



The upper bound method gives a collapse mechanism 
for the slab system at the ultimate load such that:

1.  The moments at the plastic hinges are not greater 
than the ultimate moments of resistance of the 
sections.

2.  The collapse mechanism is compatible with the 
boundary conditions.

The yield line method of analysis for slabs is an upper 
bound method, and consequently the failure load 
calculated for a slab with known flexural resistances 
may be higher than the true values in case a correct 
failure pattern is not assumed.  



This is certainly a concern, as the designer would 
naturally prefer to be correct, or at least to be on the 
safe side.  

However, procedures can be incorporated in yield 
line analysis to help ensure that the calculated 
capacity is correct.

ADVANTAGES OF YIELD-LINE ANALYSIS

Some of the most significant advantages of the yield-line 
analysis of slabs are explained here:



1.  In Strength Design, the load actions and the 
corresponding material properties are not fully 
compatible.  Yield-line analysis removes this 
inconsistency.

2.  The slabs designed by yield-line theory become 
economical as it accounts for the reserve strength 
characteristics of most concrete structures.

3.  Yield-line theory permits, within limits, an 
arbitrary readjustment of moments found by elastic 
analysis to arrive at design moments that gives 
more practical reinforcing arrangements.



4. Yield-line theory gives more general method of 
analysis and design.  It can be used for round and 
triangular slabs; slabs with large openings, slabs 
supported on two or three edges only, and slabs 
carrying concentrated loads.

5. As compared with this, the slabs are lightly 
reinforced and their rotation capacities are much 
greater than usually required.

DEMERITS OF YIELD-LINE ANALYSIS

1. The yield line method is an upper bound approach 
in determining the ultimate flexural strength of 
slabs; the error in the analysis is on the unsafe side.



2. The yield line approach is basically a tool for 
review of capacity of a given slab.  It can be used 
for design only in an iterative sense.  The capacities 
of trial designs are calculated by varying amount of 
reinforcement until a satisfactory arrangement is 
obtained.

3. Principle of superposition is not valid for any 
plastic method of analysis.  Completely 
independent analysis is generally required to be 
performed for different load combinations. 

4. For slabs having regular geometries, the 
calculations are lengthy as compared with 
traditional elastic methods.



CONVENTIONS TO SHOW BOUNDARY 
CONDITIONS AND YIELD LINES

The sign convention of Fig. 13.2 will be used 
throughout for the edge conditions.  

A simply supported edge will be shown by line with 
single hatching, a free edge will be represented by a 
simple line and a fixed, built-in, or continuous edge 
will be identified by line with double hatching.



a) Simply Supported Edge b) Free edge c)Fixed, Built-in Or 
Continuous Edge

Fig. 13.2.  Conventions to Show Edge Conditions.



Similarly, the notations to show various types of yield 
lines are shown in Fig. 13.3.  

Wavy or bold lines will show positive yield lines.  

A positive yield line is formed by sagging curvature of 
slab and the tension cracks are developed on the lower 
surface.  

Bold dashed lines will show negative yield lines.  

A negative yield line is formed by hogging curvature of 
slab and the tension cracks are developed on the upper 
surface.



or

a) Positive Yield Lines b) Negative Yield Lines

Fig. 13.3.  Convention to Show Yield Lines.



RULES TO LOCATE YIELD LINES

Rule No.1

Yield lines are straight lines because they represent the 
intersection of two planes.  

The adjacent plate segments are assumed to rotate as a 
whole with negligible elastic bending within them.  

Hence, each plate segment is a plane.
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Fig. 13.4.  Positive Yield Line in One-Way Simply Supported Slab.



Rule No.2: Yield lines represent axes of rotation.  

The slab segments are considered to rotate as rigid bodies 
in space about these axes of rotation.

Rule No.3: Axes of rotation will be formed at the 
supported edges of the slab in the following two different 
ways:

A negative yield line may form over a fixed edge 
providing constant resistance to rotation equal to 
the ultimate flexural capacity of the slab.

An existing axis of rotation is considered at the 
edge that is simply supported providing zero 
restraining moment.



Rule No. 4: An axis of rotation will pass over any 
column support.  

Its orientation depends on other considerations.  

For example, if columns are present in a row, yield line 
may pass through the column centerline.  

An independent single column may act as a full edge 
along any direction or it can act as a point load applied 
from below.

Rule No. 5: Yield lines form under concentrated loads, 
radiating outward from the point of application of the 
loads.



Rule No. 6:

A yield line between two slab segments must pass 
through the point of intersection of the axes of rotation 
on the other sides of the adjacent slab segments (Fig. 
13.5).  

This condition is not required to be satisfied if the three 
axes of rotation are parallel to each other.
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a) Correct Position of Yield Line b) Incorrect Position of Yield Line

Fig. 13.5.  Yield Line Between Two Trapezoidal Slab Segments.



Rule No.7: At a corner, the positive yield line extends 
towards the point of intersection of the two edges at an 
angle.  

Only exception to this is the formation of the corner 
levers, which will be discussed later.

Rule No.8: The positive yield lines are always pushed 
away from the negative yield lines as compared with the 
natural axis of rotation.

YIELD LINE PATTERNS

Some typical yield-line patterns developed according to 
the rules to locate the yield lines are given in Fig. 13.6. 



a) Simply Supported Square Slab b) Simply Supported Rectangular Slab

c) One-Way Rectangular Slab

d) One-Way Skew Slab



e)Slab Simply Supported 
On Three Sides

f)Slab Simply Supported On 
Two Sides And Continuous 
On Third Side



g)Triangular Slab Simply 
Supported On Two Sides

h)Fan Pattern Due To 
Heavy Concentrated Load

i)Triangular Slab 
Continuous On Two Sides

j)Square Slab Continuous On 
One Side And Simply 
Supported On Other Three Sides



k)Rectangular Slab Continuous 
On Two Sides And Resting On A 
Corner Column

l)Circular Slab Resting On 
Four Columns

m)Rectangular Slab Simply 
Supported On Three Sides 
Having Large Aspect Ratio

n)Rectangular Slab Simply 
Supported On Three Sides 
Having Small Aspect Ratio



Axis of rotation, 
becomes negative 
yield line if the corner 
is held down.

o)Square Simply Supported Slab 
With Corner Levers

Fig. 13.6.  Typical Yield Line Patterns.



FUNDAMENTAL ASSUMPTIONS 
IN YIELD LINE THEORY

1.  Steel reinforcement is fully yielded along the yield lines 
at failure.  The sections are under-reinforced with very small 
steel ratios allowing large hinge rotations.

2.  The resistance per unit width of slab is the nominal 
flexural strength of the slab; that is, mp = mn, where mn is 
calculated by the usual expression for evaluation of the 
flexural resistance.  For design purposes, mp is to be taken 
equal to φmn, with φ = 0.90 for flexure.

3.  Bending and twisting moments are uniformly distributed 
along the yield lines and these give the maximum bending 
moments perpendicular to the yield lines.



4.  Elastic deformations are negligible as compared with 
plastic deformations.

5.  Moment rotation (moment-curvature) curve of critical 
regions is idealized as elastic-plastic bilinear curve with 
considerable inelastic rotation to allow full redistribution 
(Fig. 13.7).

Fig. 13.7.  Moment Curvature 
Relationship.

φ =1/R

M Mp

Idealized

Typical



6.  Shear failure, bond failure and compression failure are 
prevented.

7.  The position of yield lines in a yield pattern depends 
upon the boundary conditions, nature of the load and the 
geometric dimensions.

CONTRIBUTION OF A STEEL (m1) ALONG 
AND ACROSS A SKEWED YIELD LINE

A moment vector (m1) shows that the reinforcement is 
provided in a perpendicular direction to resist a bending 
moment m1 given by the right hand rule, as shown in 
Fig. 13.8.



m1 - steel

m1 – moment vector

m2 - steel
m2 – moment vector

Fig. 13.8.  Steel And Its Corresponding resisting Moment Vector.

In Fig. 13.10,
φ = clockwise angle of the yield line from the 

moment axis direction,
s′ = bar spacing along the yield line,
mn = normal yield moment (perpendicular to the 

yield line, called bending moment),
mt = twisting yield moment ( parallel to yield line).
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Fig. 13.10.  Contribution of Steel Along And Across A Skewed Yield Line.



If the slab yield moment per unit width is denoted by m1, 
the total moment over a width equal to s is given by:

m1 s = Asfy × z (1)

where z = lever arm between tensile and compressive 
forces. 

The total moment along the yield line for a width equal to 
s′ is: 

mn × s′ = Asfy z × cos φ1
= m1 s cos φ1 (2)

and mt × s′ = Asfy × z × sin φ1
= m1 s sin φ1 (3)



It can be seen from Fig. 13.10 that cos φ1 =  

or s = s′ cos φ1 (4)

From Eqs. (2) and (4): mn × s′ =  m1 s′ cos2 φ1

or mn =  m1 cos2 φ1 (5)

From Eqs. (3) and (4): mt =  m1 sin φ1 cos φ1 (6)

s
s
′

The directions of normal moment vector and torsional 
moment vector are shown in Fig. 13.11, both for acute 
and obtuse angle of yield line from the resultant moment 
vector.  

The torsional moment mt is considered positive when its 
moment vector points away from the section.
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m1 φ1
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a)  Yield Line Having Acute Angle b)  Yield Line Having Obtuse Angle

Fig. 13.11.  Sense And Direction of Normal And Torsional Moments.



CONTRIBUTION OF STEEL PLACED IN 
GRID RESOLVED ALONG AND ACROSS A 
SKEWED YIELD LINE

Consider an orthogonal grid of reinforcement, with 
angle α between the yield line and the x-axis.

Bars in the x-direction are at a spacing v and have 
moment resistance my per unit length about the y-axis, 
while bars in the Y-direction are at spacing u and have 
moment resistance mx per unit length about the x-axis.

Bars in x-direction produce moment about y-axis and 
vice versa.
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180 – α

Fig. 13.12.  Contribution of Orthogonal Grid of 
Reinforcement At A Skewed Yield Line.



For the y-direction bars producing mx,

φ1 = 180 – α

(clockwise angle between yield line and moment vector)

cos φ1 =  − cos α and sin φ1 =  + sin α

and, mn = mx cos2 α

mt = − mx sinα cosα

For the x-direction bars producing my,

φ1 = 90 – α

cos φ1 =  sinα and sin φ1 = cos α



mn = my cos2 (90 – α)

= my sin2 α

and mt = my sin(90 – α) cos(90 – α)

= my sinα cosα

For both the bars present together,

mn = mx cos2α + my sin2 α

and mt =  − mx sinα cosα + my sinα cosα

=  (my – mx) sinα cosα



For the special case when mx = my = m, with the same 
reinforcement provided in each direction,

mn = m(cos2 α + sin2 α) =   m

and mt = 0 

The slab having the same resistance per unit length (mn = 
m) in all directions is said to be isotropically reinforced 
slab.

MAJOR STEPS FOR ANALYSIS

(a)  A possible mechanism or yield-line pattern is 
assumed.



(b) Segment equilibrium or virtual work method is 
used to find out the ultimate or collapse load for 
this mechanism.

(c)  The geometric dimensions within a mechanism 
are adjusted to get a minimum collapse load for 
this mechanism. 

(d) The above procedure is repeated for all the 
possible yield line patterns.  The minimum 
collapse load is considered as the final answer. 



SEGMENT EQUILIBRIUM METHOD

1.  A suitable yield line pattern is assumed according to 
previously discussed rules and guidelines producing a 
collapse mechanism.

2.  For the selected collapse mechanism, rigid body 
movements of slab segments are considered along the 
yield lines maintaining the deflection compatibility.

3.  Each piece or segment is considered as free body and 
its equilibrium is studied.

4.  Unknowns for the solution are the failure load and 
location and orientation of the yield lines.



5. The number of equilibrium equations required is equal 
to the number of unknowns.  One unknown is always the 
resisting moment of the slab or the collapse load.  Other 
unknowns are needed to define the locations of yield 
lines.

6.  The resulting equations are solved simultaneously to 
evaluate all the unknowns.

7.  Because the yield moments are principal moments 
(yielding will start at the maximum moment values), 
twisting moments are zero along the yield lines, and in 
most cases the shearing forces are also zero (maximum 
moment sections are usually associated with zero shear 
force).  Hence, only the unit moment ‘m’ is generally 
considered in writing equilibrium equations.



8.  All the other possible yield line patterns are 
investigated turn by turn.  The minimum collapse load 
is the final answer.

Example 13.1: A one way, uniformly loaded and 
continuous slab panel of 4m span having a positive 
flexural capacity of 30 kN-m/m and negative flexural 
capacities of 30 kN-m/m and 40 kN-m/m at the left and 
the right supports, respectively.  Calculate the ultimate 
load capacity of the slab.

Solution:

The slab system for the given data is shown in Fig. 
13.13.
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Fig. 13.13.  Slab System For 
Example 13.1.



Equilibrium of Portion AB

ΣMA = 0

⇒ − (30 + 30) = 0
2

2wx

− (60) = 0 (I)
2

2wx

Equilibrium of Portion BC

ΣMC = 0

⇒ − 70 = 0 (II)( )
2

4 2xw −



Equations I & II are solved simultaneously for w and x:

From I:    w = 2

120
x

Using this value of w in Eq. II, we get:

− 70 =  0( )2
2 460 x

x
−

60(16 + x2 − 8 x) − 70 x2 =  0

− 10 x2 − 480 x + 960 =  0

x2 +  48 x − 96 =  0



x =  =  1.923 m

(As x cannot be negative)
2

85.5148 ±−

∴ w =    =  32.45 kN/m2
2

120
x


