## Torsion Design

Slides prepared by
Azhar
Lecturer of Civil Engineering

## Torque:- (Twisting Moment)

- Moment about longitudinal axis.
- Corresponding deformation produced is twist or torsion.


T, Twisting Moment

$$
\tau=\frac{T r}{J}
$$

J : Valid only if no point on bar is stressed beyond proportional limit $\tau=$ Torsional Shearing Stress

$$
\tau=\frac{T r}{J}
$$

- Assumption : Plane section remains plane

- Here the emphasis will be on design


## Reasons of Torsion:

## 1. Eccentric Loading

Torsion Member


- Spandrel Beams
- Curved Stairs Slab
- Curved Beam
- Cantilever Slabs



## Reasons (conta...)

2. Different loadings and deformations of adjacent 2-D frames ( connecting members shall be subjected to torque)
3. If members are meeting at an angle in space then part of bending moment will become torque for other member.

## Soap Film Analogy

- Slope at any point is equal to shear stress at that point
- The volume between the bubble and the original plane (by the analogy of governing differential equation) is proportional to the total torque resistance ( applied). Steeper the slope of tangent at any point greater will be the shear stress.

- SFA is more useful for noncircular and irregular section for which formulas are not available.


## SFA For Rectangular Section



## Shear Flow



Shear Flow (Resultant shear at a point)

- Shear Flow = Shear Stress x Thickness = Shear force per unit length
- Shear flow is opposite to applied shear


## (ค) Eq~ E OM (contd...)



At one section only one directional flow. So closed sections are very

## Formula For Maximum Torsion

$$
\begin{aligned}
\tau_{\max } & =\frac{T x}{\alpha x^{3} y} \quad \begin{array}{l}
\text { Valid for Rectangular Section only } \\
(\mathrm{PCC})
\end{array} \\
& =\frac{\mathrm{Tx}}{\mathrm{C}} \stackrel{\mathrm{y}}{\square} \stackrel{\square}{\longleftrightarrow} \text { (smaller side) }
\end{aligned}
$$

- C , Torsion constant $=\alpha \mathrm{x}^{3} \mathrm{y}$
- $\alpha$ depends on $\mathrm{x} / \mathrm{y}$ ratio.

| $y / x$ | 1.0 | 1.5 | 2.0 | 3.0 | 5.0 | $\infty$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\alpha$ | .208 | .219 | .246 | .267 | .290 | $1 / 3$ |

## C For I-Section

## $\mathrm{C}=\sum \alpha \mathrm{x}^{3} \mathrm{y}$ <br> Plastic Torsion


-Whole the section will yield in torsion, $\tau=\tau_{y}$
-Plastic analysis assumes uniform shear intensity all around the surface and all around the cross section.


Plastic analysis can be envisioned in terms of SAND HEAP ANALOGY

## Sand Heap Analogy

- Put sand on a plate having a shape same as that of cross section ( Circular, Rectangular, Irregular)



## Sand Heap Analogy (contd...)

- Volume under the sand heap is proportional to the torque.

$$
\begin{gathered}
{ }_{\tau \max }=\frac{T x}{\alpha_{p} x^{3} y} \\
\alpha_{p}=0.33 \text { for } y / x=1.0 \\
=0.5 \text { for } y / x=\infty
\end{gathered}
$$

## General Cracking Pattern



Inclined cracks due to torsion which spiral around the member

Cracks due to $\mathrm{Vu}, \mathrm{Mu}$, and Tu

## General Cracking Pattern...

- On one web face the torque shear adds ( \& on the other face subtracts) relative to the vertical shear.


Section subjected to Shear


Section subjected to Torsion

- Cracks due to shear are parallel on both sides of the member butt due to torsion cracks are just like spiral around the member.


## Types of Torsion

There are two types of torsion depending upon its sources.

1- Equilibrium Torsion<br>2- Compatibility Torsion

Equilibrium Torsion:
Required for equilibrium \& can't be redistributed.


P x a, Can't be redistributed, Must be here to maintain equilibrium

- Torque at B
= Px L, it can't be redistributed
- If AC is not designed for torsion it will fail.



## Compatibility Torsion

Compatibility means, compatibility of deformation b/w different members meeting together.
Redistribution/Adjustment is possible.


- Redistribution is allowed by the code
- If AC is not designed for torque redistribution can be there, initially there will be some torque and if no resistance developed it will be redistributed and +ve BM in span BD will increase



## Design



- For shear design shear strength of concrete is considered.
- For torsion design shear strength of concrete is considered zero. Compressive strength is considered to an extent.


## Reinforcements

- Two types of reinforcements are required to resist torque.
i) Transverse reinforcement in the form of stirrups ( closed loop)
ii) Extra reinforcement in longitudinal directions specially in corners and around perimeter.


## Open stirrups are for Shear not for Torsion

## Design (cond...)

- If section is solid consider it hollow. Consider some outer surface to resist torque.



## Space Truss Analogy

- Shear stresses are considered constant over a finite thickness $t$ around the periphery of member, allowing the beam to be represented by an equivalent tube.
- Within the walls of the tube torque is resisted by the shear flow q. in the analogy q is treated as constant around the perimeter.



## Space Truss Analogy (conta...)

- $x_{0} \& y_{0}$ are measured from the center of wall.
- we are neglecting the internal area and using shear flow calculated from average shear stress, instead of maximum, so these two things are balancing each other. MAKING THE PROBLEM SIMPLER.


Ao = Area enclosed by the shear flow path,

$$
A o=x_{0} y_{0}
$$

## Space Truss Analogy (conta...)

- $\tau=$ Average shear stress in the wall thickness
- $\mathrm{q}=$ shear flow $=\tau \mathrm{xt}$

Moment about center due to shear flow must be equal to applied torque $\mathrm{T}_{\mathrm{As}}$, so

$$
\begin{aligned}
& \mathrm{T}=\left[\mathrm{q} \times \mathrm{y}_{\mathrm{o}} \times \frac{\mathrm{x}_{\mathrm{o}}}{2}+\mathrm{q} \times \mathrm{x}_{\mathrm{o}} \times \frac{\mathrm{y}_{\mathrm{o}}}{2}\right] \times 2 \\
& \mathrm{~T}=\mathrm{qx}_{o} y_{o}+\mathrm{qx}_{o} y_{o} \\
& \mathrm{~T}=2 \mathrm{q}_{\mathrm{o}} \mathrm{y}_{\mathrm{o}} \\
& \mathrm{~T}=2 \mathrm{AA}_{o} \\
& \mathrm{q}=\frac{\mathrm{T}}{2 \mathrm{~A}_{\mathrm{o}}}
\end{aligned}
$$

$$
\tau=\frac{T}{2 A_{o} t}
$$

## ACI 11.6.1 Commentary

Prior to cracking due to torsion the thickness we consider is

$$
\mathrm{t}=0.75 \frac{\mathrm{~A}_{\mathrm{cp}}}{\mathrm{P}_{\mathrm{cp}}}
$$

Area enclosed by the wall center line, $\quad A_{o} \approx \frac{2}{3} \mathrm{~A}_{\mathrm{cp}}$
$A_{c p}=$ Area enclosed by outside perimeter of concrete section or the gross area of the section and $p_{c p}=$ outside perimeter of the concrete cross-section.
Tensile strength of concrete is considered $=\frac{1}{3} \sqrt{\mathrm{fc}^{\prime}}$ ( which is generally $\frac{1}{2} \sqrt{\mathrm{fc}^{\prime}}$ )

## Cracking Torque

- Torque at which cracking starts.
- For pure shear case principal tensile stress is equal to Torsional shear stress.

$$
\begin{aligned}
& \tau=\frac{T}{2 A_{o} t}=\frac{1}{3} \sqrt{f c^{\prime}} \\
& T_{c r}=\frac{2}{3} \sqrt{f c^{\prime}} \times A_{o} \times t \\
& T_{c r}=\frac{2}{3} \sqrt{f c^{\prime}} \times \frac{2}{3} A_{c p} \times \frac{3}{4} \frac{A_{c p}}{P_{c p}} \\
& T_{c r}=\frac{1}{3} \sqrt{f c^{\prime}} \frac{A_{c p}{ }^{2}}{p_{c p}}
\end{aligned}
$$


$\mathrm{T}_{\mathrm{cr}}=$ Torque at which cracking starts

ACI 11.6.1
Neglect torsion effect if

$$
\begin{array}{|l|}
\hline T_{u}<=\frac{\phi T_{c r}}{4} \\
\phi=0.75 \\
T_{u}<=\frac{\phi}{12} \sqrt{f^{\prime}} \frac{A_{c p}{ }^{2}}{p_{c p}}
\end{array}
$$

ACI 11.6.2.2
Compatibility torque is allowed to be reduced to

$$
\frac{\phi}{3} \sqrt{f c^{\prime}} \times \frac{A_{c p}{ }^{2}}{p_{c p}}
$$

Value of moment and shear in adjoining member must be consider

## ACI 11.6.2.3

Unless determined by more exact analysis it shall be permitted to take the Torsional loading from slab as uniformly distributed along the member (beam).


Face of the support can be considered as critical section if there is some point moment within d distance from face of support.


$\mathrm{f}_{\mathrm{cd}}=$ Stress acting over compression diagonal $\mathrm{N}_{2}$ = longitudinal force required for equilibrium at face 2

## For Face - 2

$$
\begin{aligned}
& \mathrm{V}_{2}=\mathrm{q} \times \mathrm{y} \\
& \mathrm{~V}_{2}=\frac{\mathrm{Ty}}{2 \mathrm{~A}_{\mathrm{o}}}
\end{aligned}
$$

- $V_{i}$ is resolved in $D_{i}$ \& $N_{i}$

$$
\begin{aligned}
& f_{c d}=\frac{D i}{A r e a} \\
& f_{c d}=\frac{V_{i}}{\sin \theta} \times \frac{1}{y_{o} \operatorname{sos} \theta \times t} \\
& f_{c d}=\frac{T / 2 A_{o} \times y_{o}}{y_{o} t \sin \theta \cos \theta} \\
& f_{c d}=\frac{T}{2 A_{o} t \sin \theta \cos \theta}
\end{aligned}
$$



## Face - 2

At = Area of one leg of closed stirrup.
$\mathrm{n}=$ number of stirrups intercepted by Torsional crack

$$
n_{2}=\frac{y_{o} \cot \theta}{s}
$$

For vertical equilibrium

$$
\begin{aligned}
& n_{2} \times A_{t} f_{y v}=V_{2} \\
& \frac{y_{o} \cot \theta}{s} \times A_{t} f_{y v}=\frac{T_{n} y_{o}}{2 A_{o}} \\
& T_{n}=\frac{2 A_{o} A_{t} f_{y v}}{s} \times \cot \theta
\end{aligned}
$$


$A_{o} \approx 0.85 A_{\text {oh, }}$, or get by exact analysis

$$
\begin{aligned}
& \theta=30^{\circ} \text { to } 60^{\circ} \\
&=45^{\circ} \text { better for } \\
& \text { non-prestressed members }
\end{aligned}
$$

## Face - 2 (contd...)

$$
\begin{aligned}
& N_{2}=V_{2} \cot \theta \\
& N_{2}=\frac{T_{n}}{2 A_{o}} y_{o} \cot \theta \\
& N_{2}=\left[\frac{2 A_{o} A_{t} f_{y v} \cot \theta}{s}\right] \frac{y_{o} \cot \theta}{2 A_{o}} \\
& N_{2}=\frac{A_{t} f_{y v}}{s} \cot ^{2} \theta \times y_{o} \\
& \sum N_{i}=\frac{A_{t} f_{y v} \cot ^{2} \theta}{s}\left(2 x_{o}+2 y_{o}\right) \\
& A_{l} \times f_{y}=\frac{A_{t} f_{y v} \cot ^{2} \theta}{s} \times p_{h} \\
& A_{l}=\frac{A_{t}}{s} p_{h}\left(\frac{f_{y v}}{f_{y l}}\right) \cot ^{2} \theta
\end{aligned}
$$


$p_{h}=$ perimeter of centerline of outermost closed transverse torsional reinforcement.


## Get $\quad \frac{A_{t}}{s}=\frac{T_{n}}{2 A_{\mathrm{o}} \mathrm{f}_{\mathrm{yv}} \operatorname{Cot} \theta} \quad$ and put in Eq-1

- Smaller $\theta$ value we use, lesser shall be the stirrups but more longitudinal reinforcement \& vice versa.

```
0\downarrow Cot 0\uparrow
```

Total Reinforcement (Shear + Torsion)


## ACI 11.6.5.3

- Min longitudinal steel

$$
A_{l \min }=\frac{5 \sqrt{f c^{\prime}}}{12} \times \frac{A_{c p}}{f_{y l}}-\frac{A_{t}}{s} p_{h}\left[\frac{f_{y v}}{f_{y l}}\right]
$$

Where $\frac{A_{t}}{s}>=\frac{1}{6} \frac{b_{w}}{f_{y}}$
ACI 11.6.5.2

$$
\begin{aligned}
& \left(\frac{A_{v}+t}{s}\right)_{\min } \quad \text { is larger of } \\
& \text { i) } \frac{3}{48} \sqrt{\mathrm{fc}^{\prime}} \frac{b_{w}}{f_{y}} \\
& \text { ii) } \frac{1}{3} \frac{b_{w}}{f_{y}}
\end{aligned}
$$

## ACI 11.6.6 (Spacing requirement)

- Transverse stirrups spacing should not be more than
i) $p_{h} / 8$
ii) 300 mm
- Longitudinal bar spacing should not be more than 300 mm.
-Distributed around the perimeter of closed stirrup. -At least one in each corner.
- Dia of longitudinal bar should not be less than
i) s / 24
ii) 10 mm
$s=$ spacing of shear reinforcement


## ACI 11.6.6.3

- Torsional reinforcement shall be provided for a distance of at least ( $\left.b_{t}+d\right)$ beyond the point theoretically required
$b_{t}=$ width of torsion section
ACI 11.6.3.1
- Check for the x-sectional dimensions for combined shear and torsion

$$
\sqrt{\left(\frac{V_{u}}{b_{w} d}\right)^{2}+\left(\frac{T_{u} p_{h}}{1.7 A_{o h}{ }^{2}}\right)^{2}}<=\phi\left(\frac{V_{c}}{b_{w} d}+\frac{2}{3} \sqrt{f c^{\prime}}\right)
$$

## Design Procedure

1. Plot SF \& BM diagram, design for flexure, do partial detailing.
2. Draw factored torque diagram, get torque at different sections ad also get critical torque.
3. Neglect torsion if

$$
T_{u}<=\frac{\phi T_{c r}}{4}
$$

4. If compatibility torsion it can be reduced to

$$
\frac{\phi}{3} \sqrt{f c^{\prime}} \times \frac{A_{c p}^{2}}{p_{c p}}
$$

5. Check the x-sectional dimensions for combined actions of shear and torque, if not ok increase dimensions.
6. Design for shear and calculate $A_{v} / s$.
7. Compute the torsion transverse reinforcement $A_{t} / s$.
8. Calculate total transverse reinforcement

$$
\frac{\mathrm{A}_{\mathrm{v}+\mathrm{t}}}{\mathrm{~s}}=\frac{\mathrm{A}_{\mathrm{v}}}{\mathrm{~s}}+\frac{2 \mathrm{~A}_{\mathrm{t}}}{\mathrm{~s}}
$$

## Example



Statement : Design part of beam closer to junction and mid span section for combined action of shear, bending and torque.

## Solution:

$$
\begin{aligned}
& \mathrm{M}-\mathrm{ve}=133 \mathrm{kN}-\mathrm{m} \\
& \begin{array}{c}
\mathrm{A}_{\text {smin }}=\frac{1.4}{f_{y}} b_{w} d \\
=675.0 \mathrm{~mm}^{2}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& s=0.85 \frac{f_{c}{ }^{\prime}}{f_{y}}=0.0506 \\
& \frac{R}{f_{c}{ }^{\prime}}=\frac{M_{u}}{b d^{2} f_{c}{ }^{\prime}}=\frac{85 \times 10^{6}}{450 \times 450^{2} \times 25}
\end{aligned}
$$

$A_{s}=815 \mathrm{~mm}^{2}$
$\mathrm{M}+\mathrm{ve}=110 \mathrm{kN}-\mathrm{m}$
$A_{s}=A_{\text {smin }}=675.0 \mathrm{~mm}^{2}$

## $b$ is lesser of :

i) $\mathrm{b}_{\mathrm{w}}+4 \mathrm{~h}_{\mathrm{f}}=450+700$
ii) $\mathrm{b}_{\mathrm{w}}+\mathrm{h}_{\mathrm{w}}=450+350=800 \mathrm{~mm}$

So b $=800 \mathrm{~mm}$

## Tu 65 kN-m



$$
T_{c r} / 4=\frac{\phi}{12} \sqrt{f c^{\prime}} \frac{A_{c p}{ }^{2}}{p_{c p}}
$$

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{cp}}=450 \times 525+175 \times 350=297500 \mathrm{~mm}^{2} \\
& \mathrm{P}_{\mathrm{cp}}=(800+525) \times 2=2650 \mathrm{~mm} \\
& \quad T_{c r} / 4=\frac{\phi}{12} \sqrt{f c^{\prime}} \frac{A_{c p}{ }^{2}}{p_{c p}}=\frac{0.75}{12} \sqrt{25} \times \frac{297500^{2}}{2650} \times \frac{1}{10^{6}}=10.44 \mathrm{kNm} \quad<\mathrm{Tu}
\end{aligned}
$$

We cannot redistribute because we don't know about the other members. Their design will change if we redistribute.
$A_{\text {oh }}=210050 \mathrm{~mm} 2$
$P_{h}=2370 \mathrm{~mm}$

## Step \# 6



$$
525-25-45
$$

$$
=455
$$

Check for the x-sectional dimensions

$$
\mathrm{LS}=\sqrt{\left(\frac{\mathrm{V}_{\mathrm{u}}}{\mathrm{~b}_{\mathrm{w}} \mathrm{~d}}\right)^{2}+\left(\frac{\mathrm{T}_{\mathrm{u}} \mathrm{p}_{\mathrm{h}}}{1.7 \mathrm{~A}_{\mathrm{oh}}{ }^{2}}\right)^{2}}
$$

$$
L S=\sqrt{\left(\frac{\left(100.30 \times 10^{3}\right.}{450 \times 450}\right)^{2}+\left(\frac{65 \times 10^{6} \times 2370}{1.7 \times 210050^{2}}\right)^{2}}=3.113 \mathrm{MPa} 450-90=360
$$

For right hand side we need $\mathrm{V}_{\mathrm{c}}$

$$
\begin{aligned}
& V_{c}=\frac{1}{6} \sqrt{f c^{\prime}} b_{w} d \\
& R S=\phi\left[\frac{1}{6} \sqrt{f c^{\prime}}+\frac{2}{3} \sqrt{f c^{\prime}}\right] \\
& R S=\phi \times \frac{5}{6} \sqrt{f c^{\prime}}=0.75 \times \frac{5}{6} \sqrt{f c^{\prime}}=3.125 \mathrm{MPa}
\end{aligned}
$$

$L S<R S$ So dimensions are O.K.

## Step \#7 (independent design for shear)



## SHE H H 8 (Transverse reinforcement required for torque)

$$
\begin{aligned}
& \theta=45^{\circ} \\
& A_{o}=0.85 A_{o h} \\
& \frac{A_{t}}{s}=\frac{T u}{\phi \times 2 \times 0.85 A_{o h} \times f_{y v}} \\
& \frac{A_{t}}{s}=\frac{65 \times 10^{6}}{0.75 \times 2 \times 0.85 \times 210050 \times 420}=0.578 \mathrm{~mm}^{2} / \mathrm{mm} / \mathrm{leg}
\end{aligned}
$$

## Step \#9 (Total Transverse reinforcement)

$$
\begin{aligned}
& \text { Area of \#10 bar } \frac{A_{v+t}}{s}=\frac{A_{v}}{s}+\frac{2 A_{t}}{s} \\
& \frac{2 \times 71}{s}=0+2 \times 0.578=1.156 \mathrm{~mm}^{2} / \mathrm{mm} / \mathrm{leg} \\
& s=123 \mathrm{~mm} \\
& s=120 \mathrm{~mm}<\frac{d}{2}=\frac{450}{2}=225 \mathrm{~mm}
\end{aligned}
$$

Check is required because $\mathrm{V}_{\mathrm{u}}>\phi \mathrm{V}_{\mathrm{c}} / 2$

## Minimum shear + Torsional reinforcement

$$
\begin{aligned}
& \left(\frac{A_{v+t}}{s}\right)_{\min }=\frac{1}{3} \frac{b_{w}}{f_{y v}}, f_{c}^{\prime}<28.5 M P a \\
& \left(\frac{A_{v+t}}{s}\right) \min =\frac{1}{3} \frac{450}{420}=0.375<1.14 \quad \text { O.K. }
\end{aligned}
$$

Transverse stirrup spacing should be less than:

1. $\mathrm{p}_{\mathrm{h}} / 8=2370 / 8=296 \mathrm{~mm}$
2. 300 mm
O.K.

## Step \#10 (Longitudinal Reinforcement)

$$
\begin{gathered}
A_{l}=\frac{A_{t}}{s} p_{h}\left(\frac{f_{y v}}{f_{y l}}\right) \cot ^{2} \theta \\
A_{l}=\frac{A_{t}}{s} p_{h}\left(\frac{f_{y v}}{f_{y l}}\right) \cot ^{2} \theta=0.578 \times 2370 \times 1 \times 1=1370 \mathrm{~mm}^{2} \\
A_{l_{\min }}=\frac{5 \sqrt{f c^{\prime}}}{12} \times \frac{A_{c p}}{f_{y l}}-\frac{A_{t}}{s} p_{h}\left[\frac{f_{y v}}{f_{y l}}\right] \\
A_{l_{\min }}=\frac{5 \sqrt{f_{c}^{\prime}}}{12} \times \frac{A_{c p}}{f_{y l}}-\frac{A_{t}}{s} p_{h}\left[\frac{f_{y v}}{f_{y l}}\right]=\frac{5}{12} \sqrt{25} \times \frac{297500}{420} \quad 0.157 \times 2370 \times \frac{450}{420}=1043 \mathrm{~mm} 2 \\
\mathbf{A}_{l}=1370 \mathrm{~mm}^{2}
\end{gathered}
$$

Maximum spacing $=300 \mathrm{~mm}$
Minimum dia $=10 \mathrm{~mm}$
For three layers, $A_{l} / 3=1370 / 3=457 \mathrm{~mm}^{2}$
Top Flexural + Torsional Steel $=815+457=1272 \mathrm{~mm}^{2}$
Bottom Flexural + Torsional Steel $=1 / 4 \mathrm{~A}^{+}+457=626 \mathrm{~mm}^{2}$
$5 \# 19$ for top layer
$4 \# 19+1 \# 13$ for bottom layer

For middle layer $=457 \mathrm{~mm}^{2} 2$ \# 19


Concluded

