
MOMENT CURVATURE 
RELATIONSHIPS AND DUCTILITY

* Moment curvature relationships are very 
important to find out ductility of the structure 
and the amount of possible redistribution of 
stresses.  

* It is also very important for earthquake 
resistance and resistance against blasts.  

* Ductility is the deformation capacity of a 
member / structure after the first yield.



* Ductility gives a measure of the energy 
dissipation capacity of a member / structure.  

* Work done on a structure after yield cannot 
be stored in the material; it is converted into 
heat energy and is dissipated to environment. 

* Energy dissipation is desirable for structures 
because the heavy energy imparted by the 
ground motions, etc., are to be somehow 
released.



* The expected earthquake forces for the most 
heavy motions are reduced for design 
according to the ductility and energy 
dissipation capacity of the member, the 
reduction may be zero to more than 12 times.  

* The design for strength is carried out for 
these forces.  

* For the remaining loads, the design is carried 
out for ductility and the detailing is modified 
to improve the rotation and deformation 
capacities of the members prior to final 
collapse.



* Ductility may be categorized as material 
ductility, section ductility, member ductility 
and structure ductility.  

* In general, the magnitudes of the ductility 
for each type in case of a single structure are 
not the same and there is no direct 
relationship between these; structure 
ductility is usually much more complex.  

* Material ductility is the largest as all the 
fibers are assumed to be stressed equally.



* The measure of ductility in case of mild steel 
specimen in tension is the percentage 
elongation, which may be 0.12 to more than 
0.25.  

* Section ductility in flexure may be less than 
the material ductility because all the layers of 
the material are not equally stressed.  

* The fibers away from the N.A. are strained 
more than the inner fibers and these do not 
contribute fully in providing the energy 
absorption.



* Member ductility is lesser than the section 
ductility because after first yield at the 
critical sections, most of the curvature only 
occurs at the yielded sections with other 
elastic sections preventing the rotation.  

* In this way the overall curvature up to 
fracture is always less.

* In other words, the sections having plastic 
hinges dissipating energy have a limited 
length and the other sections do not 
contribute in energy dissipation. 



* The structure ductility is even lesser than the 
member ductility as all the members are not 
equally stresses and some of the members 
may not have plastic hinges in them near 
collapse.  

* The general order of magnitude of ductility 
in various categories is as under:

Material ductility  >  Section ductility  >  
Member ductility  >  Structure ductility



SECTION DUCTILITY
* The section ductility mainly depends on 

whether the section is under-reinforced or 
over-reinforced.  

* The balanced condition has to be 
investigated to get insight into the behavior 
of a flexural member.  

* Balanced condition is achieved when the 
concrete stresses reach some limiting 
condition and the steel starts yielding at the 
same time, as shown in Fig. 17.1.



d

Cross
Section

N.A.

Strain
Diagram

εcu = 0.003

εs = εy

c

b

Ultimate Stress 
Diagram

0.85 fc′

fs

Approximately 0.4 c
C
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A typical stress-strain curve for concrete is 
shown in Fig. 17.2.  
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Fig. 17.2. Typical Concrete Stress-Strain Curve.



A typical stress-strain curve for steel is shown in 
Fig. 17.3.
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Fig. 17.3.  Typical Stress-Strain Curve for Steel.



Knowing the size of the member (b and d) and the 
material strengths (fc′ and fy), the steel ratio for the 
balanced condition may be determined as follows:
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If the steel is provided more than that given by the 
balanced steel, the section will be over-reinforced 
having insignificant ductility.  However, if the 
steel is provided less than that given by the 
balanced steel, the section will be under-reinforced 
and its ductility is discussed here.
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Moment-curvature relationship is shown by a 
graph between the curvature (φ) taken on the x-
axis and moment taken on the y-axis.
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Stage 2:  After Cracking To 
Steel Yielding

* In this stage, we neglect the contribution of 
concrete in tension.  

* The concrete in compression can still be 
assumed to behave elastically as the 
concrete stress is less than 0.7 fc′.

* The strain diagram, stress diagram and the 
transformed section are shown in Fig. 17.5.
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Stage 3:  Steel Yielding To Ultimate
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M − φ Curve
Moment − curvature diagram (M − φ diagram) for 
a particular cross-section is plotted with x-axis 
representing the curvature and the y-axis 
representing the moment, as shown in Fig. 17.7.
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Section Ductility
Section ductility is defined as the curvature at 
ultimate (φu) divided by the curvature at the first 
yield (φy).
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Effect Of fc′ On Section Ductility

The effect of varying fc′ keeping all other 
parameters constant will be studied here.

By increasing fc′, Ec will increase, modular ratio 
will reduce, factor nρ will reduce and factor k
will also reduce.

This will result in less value of φ at the first yield.

At the ultimate, larger value of fc′ will give less 
depth of neutral axis, c, as shown below:



Effect Of fc′ On Section Ductility
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The result will be a larger value of φu = εcu / c.
Due to larger φu and smaller φy, the value of section 
ductility will be increased.

Effect Of fy On Section Ductility
By increasing fy, εy will increase, d − kd will 
remain constant and the value of φ at the first yield 
will be more.



At the ultimate condition, larger value of fy will 
give larger depth of neutral axis, c, as shown 
below:
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The result will be a lesser value of φu = εcu / c.
Due to lesser φu and larger φy, the value of section 
ductility will be reduced.



Effect Of Steel Ratio 
On Section Ductility

When the steel ratio (ρ) is increased keeping all 
other parameters constant, nρ is increased, the 
value of k becomes more, d − kd reduces and the 
value of φ at the first yield is increased. 

At the ultimate condition, more steel ratio gives 
larger depth of neutral axis, c, as shown below:
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The result is be a lesser value of φu = εcu / c.

Due to lesser φu and larger φy, the value of 
section ductility will be reduced.

Effect Of Section Depth 
On Section Ductility

By increasing the section effective depth (d) and 
keeping all other parameters including the 
amount of steel As (not the steel ratio) constant, 
ρ will reduce, k will be less, d − kd will increase 
and the value of φ at the first yield will be less.



At the ultimate condition, varying d will have no 
significant effect on the depth of neutral axis, c, 
as shown below:
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The value of φu will remain nearly constant and 
hence the value of section ductility will be 
slightly increased.



MEMBER DUCTILITY
* The member ductility may be evaluated by 

plotting the load − deflection curve and 
determining the values of maximum 
deflection at first yield, ∆y, and the ultimate 
maximum deflection, ∆u.  

* The member ductility is defined as the 
ultimate maximum deflection, ∆u divided by 
the maximum deflection at first yield, ∆y.  

* It depends upon the section properties, the 
loading and the boundary conditions.
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A typical load − deflection curve is shown in Fig. 
17.8. The area under this curve shows the energy 
absorbing capacity of the member.



A simplified M − φ curve may be used for 
plotting the load − deflection curve in order to 
reduce the calculation efforts.
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Fig. 17.9.  A Typical Simplified Moment − Curvature Curve.



P − ∆ CHARACTERISTICS

* To explain the procedure of showing the 
force − deformation characteristics, a beam 
of known cross section present throughout 
the length is considered in Fig. 17.10.

* Two loads are applied at the third points and 
are gradually increased in magnitude to 
observe the flexural characteristics.  

* A simplified M − φ curve is used to find out 
curvatures from bending moments.
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Deflections From Curvatures

The curvature is defined as the rotation per unit 
length of member for infinitely small length.  

The total rotation between any two points A and 
B of a member is given by:

θAB =                 =  area of curvature diagram 

between the points A and B.
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According to one of the moment area theorem, 

the tangential deviation of a point from tangent 

through another point B, also on the elastic 

curve, (tA/B) is equal to the first statical moment 

of the area of curvature diagram (φ = M/EI) 

between points A and B taken around a vertical 

line through point A (see Fig. 17.11).
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Plastic Hinge Length

* The zone of yielding of a plastic hinge in 
case of reinforced concrete member is 
spread out from the point of maximum 
moment.  

* It can be assumed that this zone spreads out 
by distance lesser of d / 2 and l / 28 on 
either side of the location of maximum 
moment.  



Member Ductility When More 
Than One Yields Occur Before 
Ultimate

The first and last portions of the curves may be 
extended backwards and there point of intersection 
is taken as the point of fictitious single yield 
denoted by pseudo ∆y.  

The member ductility is then defined as follows:
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Fig. 17.13.  Load Deflection Curve in Case of Two Yields.



Example 17.1: Plot moment − curvature 
diagram for the section shown in Fig. 17.14, 
ignoring the cracking. Also calculate the section 
ductility. fc′ = 25 MPa and fy = 420 MPa.

3 − #25

525600

300

Fig. 17.14.  Section Details for Example 17.1.



Solution:

fc′ =  25 MPa 
fy =  420 MPa   
Ec =  4700√25 = 23,500 MPa
n =  Es / Ec =  8.51  (say 9)
As =  1530 mm2

ρ =  As / bd =                      =  0.0097525300
1530
×
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ρ <  ρb, the beam is tension controlled or under-
reinforced.
1.  Yield Stage

nρ =  9 × 0.0097 =  0.0873

k =      nnn ρρρ −+ 2)( 2

=  0.4269 − 0.0873 =  0.34

j =  1 – =  0.887
3
k

My =  As fy jd =  1530 × 420 × 0.887 
× 525 / 10 6 =  299.2 kN-m
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2.  Ultimate Stage
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c =  a / β1 =  100.8 / 0.85  =  118.6 mm

Mu =  As fy (d – a / 2)  
=  1530 × 420 × (525 − 50.4) / 10 6
=  305.0 kN-m
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=  0.003 / 118.6  =  25.2 × 10− 6 rad / mm
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Fig. 17.15.  Moment − Curvature Diagram for Example 17.1.



Section ductility, µ =    
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Example 17.2: Plot load − deflection curve 
and calculate member ductility for a fixed ended 
beam of span 8 m, subjected to a uniformly 
distributed load of w (kN/m). fc′ = 25 MPa and fy
= 420 MPa.  Use the simplified M − φ curve 
shown in Fig. 17.16 for both positive and 
negative moments. The effective depth of the 
section is 525 mm.
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Fig. 17.16.  Moment − Curvature Diagram for Example 17.2.



Solution: w (kN/m)
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Fig. 17.17.  Moment, Curvature and Deflection 
Diagram for Example 17.2.



1.  First Yield − Formation Of End Hinges

My =  wy1 12
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Fig. 17.18.  Curvature Diagram Taken From Fig. 17.17.



∆y1 = tC/A

=  moment of parabola between A and C 
about C − moment of rectangle 
AA′C′C about C

=  2/3 (1.5 φy) l/2 (3/8 l/2) − (φy) l/2 (l/4)

=  − 1/32 φy l
2

(negative sign shows that point C deflects 
below the tangent)

=  1/32 × 6.0 × 10 −6 × 8000 2 =  12 mm



2.  Second Yield − Formation Of Central Hinge

For the formation of the central hinge, it is 
necessary that the end hinges have sufficient 
rotation capacity and this condition must be 
checked later.  

When this central hinge is formed, a positive 
moment of My must be present at the center as a 
resultant of moment of − My at the support and 
simply supported moment of wl2 / 8.



My =  − My + wy2l
2 / 8

wy2 =           =               =  75.00 kN/m2
y

28
30016×16
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M

Using first method

∆y2 = tA/C
=  2/3 (2 φy) l/2 (5/8 l/2) − (φy) l/2 (l/4)
=  1/12 φy l

2

=  1/12 × 6.0 × 10 −6 × 8000 2 =  32 mm



Using second method

∆y2 =  ∆y1 + 2/3 (φy / 2) (5/8 l/2) 
=  12 + 5/96 φy l

2

=  12 + 5/96 × 6.0 × 10 −6 × 8000 2 =  32 mm

3.  Check For Rotation Capacity 
Of Support Hinges

θavail =  (φu − φy) × d / 2   
=  (25.2 − 6.0) × 106 × 525 / 2
=  0.00504 rad.



θreq =  change in area of curvature diagrams 
between points A and C from 
formation of end hinges to formation 
of central hinge

=   2/3 (φy / 2) (l/2)  =  1/6 φy l

=                          =  0.008 rad.6
8000100.6 ×× 6−

θavail <  θreq, central hinge will not form.



If the curvature at the center due to θavail is 
denoted by φav, its value may be determined as 
follows:

2/3 (φav) (l/2)  =  0.00504
φav =  1.8 × 10 −6 rad/mm

=  0.315 φy

The moment equation then becomes the following:
(0.5 + 0.315) My =  − My + wy2l

2 / 8

wy2 =                   =                   =  68.06 kN/m2l

y

28
30052.14 ×8815.1 M×



∆y2 =  ∆y1 + 2/3 (0.315φy) (l/2) (5/8 l/2)
=  ∆y1 + 5/96 φy l

2

=  12 +                            =  24.6 mm5.30
8000106 ×× 26−
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Fig. 17.19.  Load Deflection For Example 17.2.



Member ductility, µ =

=  24.6 / 12  =  2.05
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Example 17.3: Repeat Example 17.2 if 
Grade 300 steel is used in place of Grade 420 
steel.

Solution:

fc′ =  25 MPa
fy =  300 MPa



Ec =  4700√25 = 23,500 MPa
n =  Es / Ec =  8.51  (say 9)
As =  1530 mm2

ρ =  As / bd =                          =  0.0097525300
1530
×

ρb =  0
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1020300

ρ <  ρb, the beam is tension controlled or under-
reinforced.



1.  Yield Stage

nρ =  9 × 0.0097 =  0.0873

k = nnn ρρρ −+ 2)( 2

=  0.4269 − 0.0873 =  0.34

j =  1 – =  0.887k
3

My =  As fy jd =  1530 × 300 × 0.887 × 525 / 10 6
=  213.7 kN-m

φy =  =                =  4.3× 10− 6 rad / mmdk
y

)1( −

ε

52566.0
0015.0
×



2.  Ultimate Stage

a =              =                         =  72 mmbf
ys

′85.0 3002585.0
3001530
××

×fA

c

c =  a / β1 =  72 / 0.85  =  84.7 mm
Mu =  As fy (d – a / 2)  

=  1530 × 300 × (525 − 72 / 2) / 10 6
=  224.5 kN-m

φu =            =  0.003 / 84.7  

=  35.4 × 10− 6 rad / mm
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Fig. 17.20.  Moment − Curvature Diagram for Example 17.3.



1.  First Yield − Formation Of End Hinges

My =  wy1 12

2l

wy1 =                =  40.13 kN/m28
21412×

∆y1 = tC/A
=  1/32 φy l

2

=  1/32 × 4.3 × 10 −6 × 8000 2

=  8.6 mm



2.  Second Yield − Formation Of Central Hinge

My =  − My + wy2l
2 / 8

wy2 =            =                   =  53.5 kN/m2
y

28
21416×16

l

M

∆y2 =  ∆y1 + 2/3 (φy / 2) (5/8 l/2) 
=  8.6 + 5/96 φy l

2

=  8.6 + 5/96 × 4.3 × 10 −6 × 8000 2

=  22.93 mm



3.  Check For Rotation Capacity 
Of Support Hinges

θavail =  (φu − φy) × d / 2   
=  (35.4 − 4.3) × 106 × 525 / 2
=  0.00816 rad.

θreq =  change in area of curvature diagrams 
between points A and C from 
formation of end hinges to formation 
of central hinge

=   2/3 (φy / 2) (l/2)  =  1/6 φy l



θreq =  =  0.00573 rad.8000103.4 6 ×× −

6

θavail >  θreq, central hinge will form.

3.   Additional Central Deflection After 
Formation Of Mechanism

The load remains constant after the second 
yield, w3 =  wy2.

θ ′ =  θavail − θreq

=  0.00816 − 0.00573 =  0.00243 rad.
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Fig. 17.21.  Collapse Behavior for Example 17.3.



∆′ =  θ′ × l / 2

=  0.00243 × 8000 / 2  =  9.72 mm

∆u =  ∆y2 +  ∆′

=  22.93 + 9.72  =  32.65 mm

The resulting load-deflection curve is shown in 
Fig. 17.22.  

The first and third lines of the curve are extended 
backwards and the point of intersection gives the 
pseudo yield deflection.
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Fig. 17.22.  Load − Deflection Curve for Example 17.3.



Pseudo ∆y =               × 53.6 =  11.49 mm13.40
60.8

Member ductility, µ =

=  32.65 / 11.49  =  2.84

y

u

Pseudo ∆
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REDISTRIBUTION OF MOMENTS
Redistribution of moments involving reduction 
of negative moments associated with the 
corresponding increase in the positive moments 
is usually desired for design in order to get 
better detailing and economical designs.  



The redistribution is actually decided based on the 
plastic analysis, rotation capacities at the hinges 
and the material, section, and member ductility.  

This redistribution is only possible for 
compatibility moments and not for the 
equilibrium moments.  

ACI 8.4 gives guidelines for such redistribution of 
negative moment at continuous supports as under:



(a) Elastic negative moments may be increased 
or decreased for any loading arrangement by 
a maximum of the smaller of the following 
two:
(i) 1000 εt per cent for εt up to 0.02
(ii) 20 per cent.

(b) Redistribution is only allowed if extreme 
tension steel strain, εt, is greater than or 
equal to 0.0075 at the section where the 
moment is changed.

(c) The positive moments must be calculated 
using the modified end moments.
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Fig. 17.23.  Moment Redistribution in Two Different Cases.


