
Direct Two-Way Or Punching Shear Force:

The direct shear force, Vu, to be resisted by the slab-
column connection can be calculated as the total 
factored load on the area bounded by panel centerlines 
around the column less the load applied within the area 
defined by the critical shear perimeter.  

This is to be calculated both at the column perimeter 
and at the perimeter of drop panel, if present, using the 
critical section defined in Figs. 12.18 and 12.19.
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Fig. 12.19.  Critical Section For Edge Column.

Eccentric Punching Shear Force:

According to ACI 11.2.6.2, the shear stress resulting from 
moment transfer by eccentricity of shear shall be assumed 
to vary linearly about the centroid of the critical section.  



bo = 2c1 + 2c2 + 4d
Vu = qu [l1l2 – b1 b2]
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Fig. 12.20.  Two-Way Shear Acting on Critical 
Slab Section Around Column.



The resultant shear stress acting on the critical perimeter, 
considering moment acting from both the directions, may 
be written as follows:
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Where, Ac and Jc are calculated for the faces of a box-
like shape defined by the assumed vertical failure 
section.

Ac = perimeter area of the critical section
= bod = 2(b1 + b2) d



Jc = torsional constant, like polar moment of 
inertia of the area Ac

= Ix + Iy

Torsional Constant For Interior Column:

The critical area subjected to punching shear is a three 
dimensional area and hence the calculation of its
torsional constant is not as simple as for any planar area. 

In order to get a reasonably good estimate, the width of 
the area may be squeezed to zero but maintaining the 
original area.
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Fig. 12.21.  Critical Section For Two-Way Shear Over Interior Column.



Jc =  Ix for faces AD and BC  +  Ix for faces AB and CD
+ Iy for faces AD and BC  + Iy for faces AB and CD

=  2 × + 0  +  2 × +  2 ×
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Torsional Constant For Edge Column:
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Fig. 12.22.  Critical Section For Two-Way Shear Over Edge Column.
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Torsional Constant For Corner Column:
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(b)2-D Area Equivalent to Area in (a) 
Looking From z-Direction.
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Fig. 12.23.  Critical Section For Two-Way Shear Over Corner Column.
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Concrete Punching Shear Strength (Vc):

According to ACI 11.12.2.1, for non-prestressed slabs 
and footings, Vc shall be the smallest of:

a) Vc = bodcf ′
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β = of column, concentrated load, or section area.sideshort
sidelong

bo = perimeter of critical section for slabs and footings.

b) Vc = bod

where α = 40 for interior columns
= 30 for edge columns
= 20 for corner columns
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For design, maximum shear stress due to the factored 
shear force and moment ≤ φ vn

where φ vn =

Vs = 0,  when no shear reinforcement in slabs 
in the form of shear heads.

( ) ( )dbVV osc +φ

Shear Head To Improve Strength 
Against Punching Shear:

Four types of shear heads, shown in Figs. 12.24 and 
12.25, may be designed over the top of columns in case 
the concrete strength alone is not sufficient to resist the 
applied punching shear.
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(a)  Stirrup Shear Reinforcement.
(b)  Large Interior Shear Head of 
Channel Sections.

Fig. 12.24.  Typical Shear Heads.
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(a)  Small Interior Shear Head of 
Channel Section. (b)  Shear Head of Stud Connectors.

Fig. 12.25.  More Examples of Shear Heads.



According to ACI 11.12.3, shear reinforcement consisting of bars, 
wires, single leg stirrups and double leg stirrups may be provided 
in slabs and footings with effective depth greater than or equal to 
greater of 150 mm and 16 times the shear reinforcement bar 
diameter.

This reinforcement must engage the longitudinal flexural 
reinforcement in the direction being considered.

To calculate the shear strength with shear reinforcement, the 
maximum value of Vc is taken equal to            bod and Vs is not to be 
taken greater than bod.

cf ′6/1

cf ′3/1

In other words, the maximum two-way shear strength cannot 
exceed bod, even if shear reinforcement is provided.cf ′2/1

The area of shear reinforcement, Av, is equal to area of all legs of 
reinforcement on one perimeter of the column section.



• The distance between the column face and the first line 
of stirrup legs that surround the column must not exceed 
d/2.  

• The spacing parallel to the column face between the 
stirrups in this first line must not exceed 2d.  

• The spacing between successive lines of shear 
reinforcement that surround the column must not exceed 
d/2 measured in a direction perpendicular to the column 
face.

• Structural steel I− and channel−shaped sections are also 
allowed in the slabs.  

• Arms of the shear-head must not be interrupted within 
the column sections.  



• The section should not be a depth greater than 70 
times the web thickness of the steel shape.  

• All compression flanges of the structural shapes 
are to be located within 0.3d of compression 
surface of the slab and these sections may be 
considered to be effective in resisting the 
moments besides providing the shear strength.  

• The ratio (av) between the flexural stiffness of 
each shear-head arm and that of the surrounding 
composite cracked slab section of width (c2 + d) 
must not be less than 0.15.



Example 12.1: Perform check for punching 
shear of a two-way slab system (Fig. 12.26) at the 
given edge column.  The panel size is 6m × 8m and 
all conditions of direct design method are satisfied.
The other related data is as under:

qu =  11,000 Pa
Mu (unbalanced)=  200 kN-m
fc′ =  25 MPa
h =  230 mm
d =  190 mm



Solution:

β =  longer / shorter sides ratio for the column  =  2.0

600mm

1200mm 8 m

3.5 m

Direction of 
unbalanced 
moment

200mm

Fig. 12.26.  Slab System For Example 12.1.



b1 =  600 + 190/2 + 200  =  895 mm
b2 =  1200 + 190  =  1390 mm
bo =  2 b1 + b2 =  3180 mm
αs =  30 for the edge column

vc = the least out of the following

i)     =  =  1.667 MPacf ′
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iii)   =  =  1.667 MPacf ′
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φ vc =  0.75 × 1.580 =  1.185 MPa

Ac = bo × d =  3180 × 190 =  604,200 mm2
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Jc =  5,349,563 × 104 mm4

γf = = =  0.651
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γf = 1 − γf = 0.349

More flexural steel is to be provided near the column, in 
a width of c2 + 3h, to transfer 65.1% of moment.

Direct shear force, Vu = qu [length × width – b1 b2]

=    =  294.3 kN( )( ) ( )( )[ ]390.1895.085.3
1000

000,11
−



Direct shear stress =  Vu / Ac =  294.3 × 1000 / 604,200
=  0.487 MPa

Eccentric shear =  
c

u

J
xM 1νγ

=    =  0.329 MPa  4

6

10563,349,5
25210200349.0

×
×××

Total applied shear, νu =  0.486 + 0.329  =  0.815 MPa
νu ≤ φνc ⇒ The slab is safe against two-way shear.

If νu > φνc, following solutions are possible:

* Design a shear head.
* Provide drop panels or column capitals.
* Slightly increase the depth of slab if the difference 

of νu and φνc is smaller.



Example 12.2: Design reinforcement for the interior 
panel of the flat plate floor system, shown in Fig. 12.27.  
Assume that direct design method is applicable and the 
depth criterion is satisfied using a depth of 220 mm.  
Check the depth of slab for shear considering the effect of 
eccentric shear equal to 15% of the direct shear for this 
interior panel.  The other related data is as under:

Live load =  300 kgs/m2

Floor finish and partitions =  150 kgs/m2

Mu (unbalanced) =  200 kN-m
fc′ =  25 MPa
fy =  300 MPa
h =  220 mm



750 mm φ Columns

6m

8m

Fig. 12.27.  Typical Interior Panel of Slab System For Example 12.2.



Solution:

Equivalent square column side, h = 
4
π (750) = 665 mm

qL = 300 N/m2

qD = 0.220 × 2400 + 150 =  678 N/m2

qu = [1.2(qD) + 1.6(qL)] × 9.81 / 1000
= [1.2(678) + 1.6(300)] × 9.81 / 1000
=  12.69 kN/m2

The column and middle strips are shown in Fig. 12.28.



665mm square
2.5m

1.5m

1.5m = Half
Middle Strip

Column 
Strip

1.5m

1.5m

1.5m

Fig. 12.28.  Equivalent Columns And Column And Middle Strips.



1.  E−W Span
l1 = 8m
l2 = 6m
ln = 8.0 – 0.665 =  7.335 m
l2w = 6.0 m

Mo = qu
8

2
2 nw ll =  (12.69) ( )( )

8
335.70.6 2

=  512.1 kN-m 

Support Section (Top steel, E–W Direction)
M − =  0.65 Mo  =  0.65 (512.1)  =  332.9 kN-m
A = l2/l1 = 0.75
α f1 = 0 (no beam), D =  0
%age CS moment out of positive moment  =  75%
%age CS moment out of positive moment  =  60%



Column Strip: 0.75 (332.9) = 249.7 kN-m  
Middle Strip: 0.25 (332.9) = 83.2 kN-m  

Mid Span Section (Bottom steel, E–W Direction)
M+= 0.35 Mo= 0.35 (512.1) = 179.2 kN-m  
Column Strip = 0.60 (179.2) = 107.6 kN-m  
Middle Strip = 0.40 (179.2) = 71.6 kN-m  

2.0  N – S Span

l1 = 6m
l2 = 8m
ln = 6.0 – 0.665 = 5.335m
l2w = 8m



Mo = (12.69) = 361.2 kN-m( )( )
8

335.50.8 2

Support Section (Top steel, N–S Direction)

M − = 0.65 Mo = 0.65 (361.2)
= 234.8 kN-m  

Column Strip = 0.75 M − =  0.75 (234.8)  =  176.1 kN-m  
Middle Strip = 0.25 M − = 0.25 (234.8) =  58.7 kN-m

Mid Span Section

M + =  0.35 Mo =  0.35 (361.2)  = 126.4 kN-m  
Column Strip = 0.60 (126.4) = 75.8 kN-m  
Middle Strip = 0.40 (126.4) = 50.6 kN-m
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Fig. 12.29.  Moments Across Full Width of Strips For Example 12.2.



smax =  2h =  440 mm
d =  220 − 20 − 16 − 6 =  178 mm   

(lesser value for the inner steel)
ρmin =  0.0020,  As,min =  0.002 × 1000 × 220

=  440 mm2/m width



Table 12.12.  Calculation of Slab Steel For Example 12.2.

Design 
Frame

Location Strip Width
mm

Mu
kN-m

R
=Mu/bd 2

ρ As
mm2

Steel

E-W Support
Top steel

CS 3000 249.7 2.627 0.0106 1887 #19@150mm c/c

MS 3000 83.2 0.875 0.0033 587 #13@200mm c/c

E-W Mid-span
Bot. steel

CS 3000 107.6 1.132 0.0046 819 #13@150mm c/c

MS 3000 71.6 0.753 0.0029 516 #13@250mm c/c

N-S Support
Top steel

CS 3000 176.1 1.853 0.0076 1353 #19@200mm c/c

MS 5000 58.7 0.371 0.0025 445 #10@160mm c/c

N-S Mid-span
Bot. steel

CS 3000 75.8 0.797 0.0033 587 #13@200mm c/c

MS 5000 50.6 0.319 0.0025 445 #10@160mm c/c



Table 12.13.  Curtailment of Slab Steel For Example 12.2.

Design 
Frame

Span Lengths Column Strip
+ ½ Eq. Column Size

Middle Strip
+ ½ Eq. Column Size

l1
(mm)

ln
(mm)

0.30 ln
(mm)

0.20 ln
(mm)

0.22 ln
(mm)

0.15 ln
(mm)

E-W 8000 7335 2540 1800 1950 1430

N-S 6000 5335 1940 1400 1510 1130



1400 

1940 

#10@160 (alt.) 

150mm lap

Full tension 
splice

1130 

1510 

1510 

#19@200 (alt.) 

#13@200 (alt.) 

#10@160 



150mm lap

Full tension 
splice

1430 Each

2540 

1950 1950 

#13@250 (alt.) 
#13@150 (alt.) #13@200 

#19@150 (alt.) 

2540 
1800 Each

Fig. 12.30.  Detailing For Slab of Example 12.2.



Example 12.3: Calculate the design moments for the 
exterior panel of the flat plate system given in Fig. 12.31, 
perpendicular to the edge.  The other related data is as 
under:

Clear cover =  20 mm
Grade of steel =  420 MPa
Superimposed qD =  150 kgs/m2

Live load qL =  300 kgs/m2

fc′ =  20 MPa

Solution:

Longer ln = (6000 – 375) / 1000 =  5.625 m 



375mm×375mm Columns

l2=5.5m

l1=6.0m

l2=5.5m

Fig. 12.31.  Flat Slab of Example 12.3.

hmin. ≅ ln / 30 for fy =  420 MPa ≥ 120 mm
= (5.625×1000) / 30 =  187.5 mm  ≥ 120 mm

OK

Try h = 200 mm



Total Static Moment

qD = 0.2 × 2400 + 150 =  630 kgs/m2

qL = 300 kgs/m2

qu = [1.2(630) + 1.6(300)] × 9.81 / 1000
=  12.13 kN/m2

l2w = 5.5 m

Mo = =    

=  263.8 kN-m
8

2
2 nwuq ll

8
625.55.513.12 2××



Longitudinal Distribution Of Moments

Mo = 263.8

Int. M  =0.70Mo =  −184.7kN-m

M+  =  0.52Mo =  +137.2kN-m

Ext. M  =0.26Mo =   −68.6kN-m
Torsional Member

There is no edge beam and 375mm width of slab may be 
assumed to act as a torsion member, as shown in Fig. 
12.32.



L-section in l2 direction

x = 200mm

y = 375mm

X-section in l1
direction

8″

5500mm

Fig. 12.32.  Torsion Member For Example 12.3.
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Transverse Distribution Of Moments

The column strip moment percentages are calculated as 
under:



Int. M − =  75 + 30(1−A)D =  75%

Ext. M − =  100 − 10B + 12BD(1 − A) =  99.1%

M + =  60 + 15(3−2A)D =  60%

Mo = 263.8

Int. M =0.70Mo = −184.7kN-m

M+ = 0.52Mo = +137.2kN-m

Ext M =0.26Mo = −68.6kN-m

CS = 0.75(−184.7) = 138.5kN-m

MS = 0.25(−184.7) = 46.2kN-m

CS = 0.60(137.2) = 82.3kN-m

MS = 137.2−82.3 = 54.9kN-m

CS = −68.0k-ft (99.1%)

MS = very small



Continued on next file


