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The simple plastic design procedure starts by 
assigning ratios to the plastic moments of 
resistance of the various members, 
approximately targeting economy of the 
structure.  

By this procedure, the member economy at 
the most may be satisfied.  

However, the capacity of individual members 
may also affect the design of other members 
and overall economy of the structure becomes 
a complex phenomenon.



The equilibrium method of analysis involves 
plotting of simply supported moment diagram 
and a reactant line.  

The position of this reactant line may be adjusted by 
selecting Mp – values at some critical sections and a 
number of design solutions may thus be obtained.

Factors other than strength may also be introduced 
to decide the best design.  

Examples of such factors are limiting deflections, 
minimum total weight, availability of sections, 
convenience of fabrication and minimum total cost.  

The most useful criterion is that of minimum total 
weight and will be discussed here. 



It is necessary to adopt some relationship 
between weight per unit length “g” and 
plastic moment “M”.

In general,      g ∝ Mn or      g =  k Mn

(k is just a scale factor)

For W and S sections,    n  ≈ 0.6

For a structure consisting of a number of prismatic 
members of length Li with full plastic moment Mi, 
the total weight G can be expressed as:

G =  k ∑ Li Mi
n



M1

3 kN

1 m 1 m 1 m 1 m

1 kN

M2

M 0.5

1.5



Consider the example of a two bay continuous 
beam with equal spans as shown in the figure.

The total weight of the continuous beam, to 
some scale (k may be considered equal to 1), 
can be expressed as follows:

G =  M1
n +  M2

n (I)

Considering reactant line with 

M2 =  M   :    M1 =  3 / 2 – 1 / 2 M (II) 

Combining equations I and II:

G =  (M1 =  3 / 2 – 1 / 2 M)n +  Mn (III) 



The minimum weight problem is resolved into 
finding the value of M to give the least value 
of G from Eq. III.

1. Minimum Value of M2

As already considered M is the moment at the 
central support and is equal to smaller moment 
capacity out of the two beams, M2.

For required strength of the right panel:

M2 +  0.5 M2 =  0.5

⇒ (M2)min =  1 / 3



2. Maximum Value of M2

The maximum value at the most can be equal 
to the moment capacity of the larger section, 
(M2)max =  M1

3. Minimum Value of M1

The value will be the minimum when the 
maximum value of M2 and hence M is used.

0.5 M2 +  M1 =  1.5

0.5 M1 +  M1 =  1.5

⇒ (M1)min =  1 



4. Maximum Value of M1

The value will be the maximum when the 
minimum value of M2 (= 1 / 3)is used.

0.5 M2 +  M1 =  1.5

0.5 × 1 / 3 +  M1 =  1.5

⇒ (M1)max =  4 / 3

To minimize the weight, we get:

0
2
1

2
3

2
1 1

1 =

















 −−=

−
−

n
n MMn

dM
dG



1
1

2
1

2
3

2
1 −

− 





 −=

n
n MM

( )MMM
n
n

n
−






=






 −






=

−−
3

2
1

2
1

2
3

2
1 11

1

32 1 =+− MMn
n

( ) 321 1 =



 + − Mn

n

( ) 121

3

−+ n
nMmin =  

For n  =  0.6,  Mmin =  0.784



However, Mmin = M2 is known to be 1 / 3, 
giving M1 equal to 4 / 3.  

The answer is not correct and, for the value of M 
less than this limit, dG / dM is positive showing a 
continuous decrease in the weight.

In this example, differentiation has not given the 
final solution, but merely has indicated that M2
should be reduced and M1 increased 
correspondingly.  

With unequal spans and different loads, M2 might 
have to be increased and a uniform beam design 
might result. 



In either case, a general trend only is 
indicated, and the least-weight design 
occurs when other considerations enter 
into the problem.  

It should be noted that other considerations (such 
as equilibrium condition, M2 ≥ 1/3) are in no way 
dependent on the form of the function assumed to 
give the total weight o the structure.

Other simpler functions for the weight may also 
lead to same minimum design, Provided that they 
are not too different from the true expression.  

Further, the sections for a particular data do not 
vary over full range of sections available.  



For example, function of linear form may be 
taken:

g =  a +  k M V
G =  ∑ Li (a + k Mi)

=  a ∑ Li + k ∑ Li Mi

The term a ∑ Li is constant for a structure and 
cannot be varied.  Further, the constant “k” is a 
scale factor on the weight W.  We may consider:

G =  (M1 + M2) 2L VI

or G  =  M1 + M2

as 2L is a constant multiplier. 



From Eq. II,

G =  (1.5 − 0.5M) + M

=  1.5 + 0.5 M2 since M  =  M2

Again dG / dM2 does not yield a solution.  However, 
it is quite clear hat smallest possible value of M2 will 
give the minimum weight.  The same solution as 
before is obtained.

METHODS OF INEQUALITIES

The same example of two span beam will be used.  
The fact that the bending moment at each of the 
three critical sections must be not greater than the 
full plastic value can be expressed as: 



Midspsan: M1 ≥ 1.5 − 0.5M (left span)
and M2 ≥ 0.5 − 0.5M (right span) VII

Central Support: M1 ≥ M   and  M2 ≥ M VIII

Inequalities VIII are required as it is not known in 
the general that whether M1 is greater or M2 is 
greater.  For loading to give opposite sign 
moment, we have

−M1 ≥ 1.5 − 0.5M; −M2 ≥ 0.5 − 0.5M; −M1 ≥ M   
and  −M2 ≥ M IX

In the present case, signs are known and 
inequalities IX are not required.  Inequalities VII 
(last two) and VIII (first two) may be simplified as:



i) − M + M1 ≥ 0
ii) − M + M2 ≥ 0
iii) M + 2M1 − 3 ≥ 0
iv) M + 2M2 − 1 ≥ 0 X

Adding (i) with (iii) and (iv) and also (ii) with 
(iii) and (iv) to eliminate M, we get:

i) 3M1 + 3  ≥ 0
ii) M1 + 2M2 − 1 ≥ 0
iii) 2M1 + M2 − 3 ≥ 0
iv) 3M2 − 1 ≥ 0 XI



Considering M1 ≥ 1, the 2nd inequality gives 
2M2 ≥ −ve value, which is always satisfied and 
is redundant.

Putting M1 = G − M2, we get:

G − M2 − 1 ≥ 0
2G − M2 − 3 ≥ 0
M2 − 1/3 ≥ 0 XII

Adding 3rd inequality to 1st and 2nd:
G − 4/3 ≥ 0 or  G  ≥ 4/3
2G − 10/3 ≥ 0 or  G  ≥ 5/3 XIII
G  ≥ 5/3 XIV



Putting G = 5/3 in 2nd of inequalities XII:

M2 ≤ 2 × 5/3 − 3or M2 ≤ 1/ 3

The 3rd inequality gives M2 ≥ 1/ 3.

Hence the only possible value is M2 =  1/ 3, 
implying that M1 =  4/ 3.



Example
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Consider the design of the two-span beam 
with the plastic moments of the left-side and 
right-side spans being M1 and M2, 
respectively.  

It is required to determine the values of M1
and M2 to give minimum total weight, G, for 
the given loads.  

The factor λ is a load factor that must be 
one for minimum weight.

G  =  k (6 M1 + 8 M2)



There are four possible mechanisms A, B, C 
and D.  

Mechanisms A and B are postulated on the 
assumption that M1 > M2 and mechanisms C 
and D on the assumption that M1 < M2.  

It is necessary to postulate both sets of 
mechanisms since it is not known at the start 
which span should have the larger plastic 
moment.

Note that every mechanism in this case can 
be the final mechanism provided that the Mp
values are selected accordingly. 
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The load factors for these mechanisms are 
as under:

For each λ = 1, the equations may be plotted on a 
M1 – M2 space.

3
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A
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==λ 3  =  3M1 + M2

For M1 = 0, M2 = 3

For M2 = 0, M1 = 1
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M2 = 2.7

M1 = 0.75

8  =  M1 + 2M2

For M1 = 0, M2 = 4
For M2 = 0, M1 = 8

Combinations of M1 and M2 to the left and below the 
mechanism lines show relative values of M1 and M2
that are safe (λ at least equal to 1.0).

The area bounded by these mechanism lines forms 
a permissible region in which any design in which 
any safe design must lie. 



M1

M2

0

6

4

8642

2

8

a

b

a′

b′

c

λA = 1

λB = 1

λC = 1

λD = 1

d

f



Mechanism A will not actually occur as when 
left span is stronger, the right span may fail 
because it has more loads. 

The weight function (as shown by dashed line in 
the figure) may also be plotted by a straight line 
anywhere but maintaining the correct M1 : M2
ratio.  Any set of parallel lines may then be drawn.

G / k  = 6 M1 + 8 M2

When M1 = 0, M2 = G / 8k

When M2 = 0, M1 = G / 6k 



M1 intercept : M2 intercept  =  G / 6k : G / 8k

=  4 (horizontal) : 4 (vertical)

A parallel line that just touches the permissible 
region represents the minimum weight design.  

The point of intersection in this example is the point 
“d”.  

For this point, M1 =  0.75

and from mechanism D,   8  =  M1 + 2 M2

M2 =  29 /8 

Hence  G  =  k (6 M1 + 8 M2)  =  33.5 k



Any other point, such as “f”, gives greater G.

M2 =  8 / 3

and from mechanism D,   8  =  M1 + 2 M2

M2 =  8 / 3

Hence  G  =  k (6 M1 + 8 M2)  =  37.3 k



In the above example, slope of the weight line 
a’b’ which touches the boundary of the 
permissible region at “d” is intermediate 
between the slopes of the mechanism lines C 
and D which intersect at “d”.

Weight line has the form:

G  =  k (6M1 + 8M2) I

Mechanism C: 3  =  4M1 II

Mechanism D: 8  =  M1 + 2M2 III



The statement that a’b’ has a slope 
intermediate between those of Eqs. II and III
mean algebraically that it must be possible to 
combine these equations with positive multiplier µ
with Eq. III. 

Adding µ × Eq. III and Eq. II, following is obtained:

3 + 8µ =  (4 + µ) M1 + 2 µ M2 IV

The resulting equation is identical in slope with Eq. I 
if µ = 8, making Eq. IV the following:

69  =  12 M1 + 16 M2



θ
8θ2θ

The addition of mechanism C to eight times 
mechanism D leads to the above mechanism.  In 
this mechanism, the total hinge rotation ∑θ
associated with any plastic moment of resistance M 
is proportional to the total lengths of members with 
that plastic moment.

Span 1: ∑θ =  4 + 8  =  12 ∑L =  6

Span 2: ∑θ =  16 ∑L =  8



Uniqueness Of Minimum Weight

For “j” members of a structure,

G  =  j
j

j LMk ∑ I

i
i

iM ∆∑j
j

jW φ∑

Suppose it is possible to postulate a mechanism 
involving total plastic hinge rotations φj
associated with plastic moments Mj, together with 
corresponding displacements ∆i associated with 
the loads Wi, such that in the work equation

=  



The condition φj = αj Lj is satisfied where “α” is 
a constant. Any plastic rotation φj is composed 
of individual rotations φjk at points hjk, so that

φj =  ∑
k

jkφ

Then, providing the bending moments throughout 
the structure satisfy the equilibrium and yield 
conditions for plastic collapse, the structure is a 
minimum weight structure for the given loads.



A design thus gives the minimum weight if it 
satisfies the following four conditions:

(i) Equilibrium condition.

(ii) Yield condition (M ≤ Mp).

(iii) Mechanism condition (collapse 
mechanism is produced).

(iv) Plastic hinge condition (φj = α Lj).



Upper Bound On Minimum Weight

Any design for which a set of bending moments 
satisfying conditions (a) and (b) is available gives an 
upper bound on the minimum weight.  

In terms of the graphical representation, any design 
satisfying the equilibrium and yield conditions must 
lie within the permissible region, and cannot lie 
nearer to the origin than the tangent weight line.

Any design for which a set of moments satisfying 
conditions (a), (b) and (c) is available will just 
collapse under the specified loads, and therefore 
also give an upper bound on the minimum weight.  



In terms of the graphical representation, such a 
design lies on the boundary of the permissible 
region.

Lower Bound On Minimum Weight

Any design satisfying conditions (c) and (d) 
provides a lower bound on the minimum weight.

For example, a weight line may be drawn through 
“e” of the previous example, representing a 
combination of mechanisms B and C, and the 
corresponding weight is a lower bound on the 
minimum weight.  

In the absence of the first two conditions, the design 
will be unsafe.



Example

Design the following frame for minimum weight.
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Solution

G  =  k (4L × M1 + 3L × M2)

=  4 M1 + 3 M2 (omitting the constants) 

L L

2P

4P 2P

M2

L L

LM2
M2

2θ
θ

2θ
θ θ θ

Mechanism 1 Mechanism 2



Mechanism 1

4 P × θ L =  4 M1 θ

M1 =  PL

If PL is considered equal to 1.0, then    M1 =  1
Eq. II

Mechanism 2

2 P × θ L =  4 M1 θ

M1 =  0.5 PL

If PL is considered equal to 1.0, then    M1 =  0.5
Eq. III



Mechanism 3
2 P × θ L =  6 M2 θ
M2 =  0.33 PL

If PL is considered equal to 1.0, then    
M1 =  0.33 Eq. IV

L L

2P

L L

Lθ

Mechanism 3

θ θ



Mechanism 4
2 P × θ L + 4 P × θ L =  3 M1 θ + 5 M2 θ

If PL is considered equal to 1.0, then    
3M1 + 5M2 =  6 Eq. V
If M2 =  0,  M1 =  2   
and if  M1 =  0,  M2 =  6/5  =  1.2   

L LL L

Lθ

Mechanism 4

θ θ

θ

2θ



Mechanism 5
4 P × θ L  =  3 M1 θ + M2 θ
If PL is considered equal to 1.0, then    
3M1 + M2 =  4 Eq. VI
If M2 =  0,  M1 =  1.33   
and if  M1 =  0,  M2 =  4  

L L

4P 2P

M2

L L

LM2 M2

2θ
θ θ

Mechanism 5



Mechanism 6
=  Mechanism 4  +  2.2 × Mechanism 5
9.6M1 + 7.2 M2 =  14.8 Eq. VI
If M2 =  0,  M1 =  1.54   
and if  M1 =  0,  M2 =  2.06   

L LL L

Lθ

Mechanism 6

θ θ

3.2θ
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Weight line has the form:

G  =  2 M1 + 1.5 M2

(By taking 2 as common and eliminating it)

For G  =  1

If  M1 = 0, M2  =  0.67 and if M2 = 0, M1  =  0.5

The next step is to maintain M1 and M2 in the same 
ratio, but to increase their values until a point on the 
boundary of the permissible region is obtained.

The weight line intersects the permissible region at 
point c, which is the point of intersection of 
mechanisms 4 and 5.
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Slope of weight line  =  

Slope of mechanism-4 line  =  

Slope of mechanism-5 line  =  =  − 3

=  − 1.33

=  − 0.6

The slope of the weight line is in-between the 
slopes of mechanisms 4 and 5. The weight line 
passing through “c” is obtained by combining Eq. 
V and µ times Eq. VI. Adding µ × Eq. VI and Eq. 
V, following is obtained:

3 (1 + µ) M1 + (5 + µ) M2 =  6 + 4µ Eq. VII



The slope of this equation must be same as 
that of the weight line.

3 (1 + µ) + (5 + µ) 
1

2

dM
dM =  0

1
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)5(
)1(3
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−or =    =  − 4/3

)5(
)1(3

µ
µ

+
+

=  4/3     or  µ = 2.2 Eq. VIII

This gives mechanism-6 with the following 
equation:

9.6M1 + 7.2 M2 =  14.8 Eq. IX



Eq. V − VI gives the intersection point “c”:

4 M2 =  2      M2 =  0.5

From Eq. V:  

3 M1 + 5 / 2  =  6      M1 =  7 / 6

∴ Gmin =  4 (7 / 6) + 3 (1 / 2)  =  6.17



Concluded


