Steel Structures

M.Sc. Structural Engineering

Steel Structures

Torque

Moment about longitudinal axis
Corresponding deformation produced is twist or torsion.

Torque can be resisted in two different ways

1. Pure Torsion (St. Venant Torsion)
2. Warping Torsion

Steel Structures

Pure Torsion

In this case the various cross-sections along the length of the member rotate relative to each other causing twist of the member.

Any particular cross section twists as a whole
Typical example is the torque applied on a circular rod. Warping Torsion
The whole cross-sections do not rotate as a whole

Steel Structures

Under the Action of Torque

Plane section do not remain plane in warping torsion

Steel Structures

Torsion Formula for Circular Section
(Pure Torsion)

1. Plane section remains plane.
2. Radial lines remain straight.
3. Moment is applied along longitudinal axis.
4. Material remains elastic.

Steel Structures

Torsion Formula for Circular Section (contd...)
$\theta=$ total rotation of any section w.r.t. the reference point.
$\phi=$ change of angle per unit length
$\phi=\theta / \mathrm{L}$ for linear increase
$\phi=\mathrm{d} \theta / \mathrm{dz}$ in general
$\rho=$ radial distance up to any point where stresses are to be calculated.
$\tau=$ shear stress at any point
$\gamma=$ shear strain at any point

Helix, deformed position of line $A B$ after twist

Steel Structures

Torsion Formula for Circular Section (contd...)
Shear stress due to pure torsion is always perpendicular to the redial distance at that point.

$$
\begin{aligned}
& \gamma=\frac{B^{\prime} C^{\prime}}{d z} \longrightarrow \gamma=\frac{\rho d \theta}{d z} \\
& \gamma=\rho \frac{d \theta}{d z} \longrightarrow \gamma=\rho \varphi
\end{aligned}
$$

Steel Structures

Torsion Formula for Circular Section (contd...)

$$
\begin{aligned}
\mathrm{dT} & =\rho \times \tau \mathrm{dA} \\
& =\rho \times(\gamma \mathrm{G}) \mathrm{dA} \quad \because \tau=\gamma \mathrm{G} \\
& =\rho \times(\rho \phi) \times \mathrm{Gd} A \\
& =\rho^{2} \times \phi \times \mathrm{Gd} A
\end{aligned}
$$

$$
\begin{gathered}
T=T_{r}=\int_{A} \rho^{2} \times \phi \times \mathrm{Gd} A \\
T=\phi \times \mathrm{G} \int_{A} \rho^{2} \mathrm{~d} A
\end{gathered}
$$

$$
T=\phi \times \mathrm{GJ}
$$

$\mathrm{GJ}=$ torsional rigidity
$\mathrm{J}=\mathrm{I}_{\mathrm{x}}+\mathrm{I}_{\mathrm{y}}$ For circular section
Now

$$
\begin{gathered}
\tau=\gamma \mathrm{G} \\
\tau=\rho\left(\frac{\mathrm{T}}{\mathrm{GJ}}\right) \mathrm{G} \\
\tau=\frac{\mathrm{T} \times \rho}{\mathrm{J}}
\end{gathered}
$$

Steel Structures

Torsion Formula for Circular Section (contd...)

Shear stress due to torsion

Steel Structures

Pure Torsion For Non-Circular Section

(Experimental Method)
Soap Film Analogy
The volume between the bubble and the original plane (by the analogy of governing differential equation) is proportional to the total torque resistance (applied). Steeper the slope of tangent at any point greater will be the shear stress.
SFA is more useful for noncircular and irregular section for which formulas are difficult to derive.

Steel Structures

Pure Torsion For Non-Circular Section

 Soap Film Analogy (contd...)

Rectangular Cross Section

Steel Structures

Pure Torsion For Non-Circular Section Soap Film Analogy (contd...)

Soap Film

Steel Structures

Pure Torsion For Non-Circular Section By Timoshenko

$$
\begin{array}{rlr}
\tau_{\max } & =\frac{T t}{\alpha b t^{3}} & \text { Valid for Rectangular Section only } \\
& =\frac{T t}{C} & \square \mathrm{t} \text { (smaller side) }
\end{array}
$$

- C, Torsion constant $=\frac{b t^{3}}{3} \quad a=1 / 3$ for practical section
α dith large b / t ratio.
- α depends on b / t ratio.

For section consisting of more than one rectangular

b / t	1.0	1.5	2.0	3.0	5.0	∞
α	.208	.219	.246	.267	.290	$1 / 3$

$$
\mathrm{C}=\Sigma \frac{\mathrm{bt}^{3}}{3}
$$

Steel Structures

Plastic Torsion

Whole the section will yield in torsion, $\tau=\tau_{\mathrm{y}}$
Plastic analysis assumes uniform shear intensity all around the surface and all around the cross section.

Plastic torsions can be envisioned in terms of SAND HEAP ANALOGY

Steel Structures

Sand Heap Analogy

Put sand on a plate having a shape same as that of cross section (Circular, Rectangular, Irregular)

Slope of sand
 heap is constant everywhere as
$\tau=\tau_{\mathrm{y}}$ throughout

Steel Structures

Sand Heap Analogy (contd...)

Volume under the sand heap is proportional to the torque.

$$
\begin{gathered}
\tau_{p_{\max }}=\frac{T t}{\alpha_{p} b t^{3}} \\
\begin{array}{c}
\alpha_{p}=0.33 \text { for } \mathrm{b} / \mathrm{t}=1.0 \\
=0.5 \text { for } \mathrm{b} / \mathrm{t}=\infty
\end{array}
\end{gathered}
$$

Steel Structures

Torsion in Hollow Tubes

Steel Structures

Torsion in Hollow Tubes

$\mathrm{V}=$ Resultant shear force at a face
τ_{1} remains constant throughout the length

$$
\begin{gathered}
V_{A B}=\tau_{1} \times \mathrm{t}_{1} \times d z \\
V_{C D}=\tau_{4} \times \mathrm{t}_{2} \times d z \\
\sum F_{z}=0 \Rightarrow \quad V_{A B}=V_{C D} \quad \text { To maintain equilibrium } \\
\\
\tau_{1} \times \mathrm{t}_{1}=\tau_{4} \times \mathrm{t}_{2}
\end{gathered}
$$

For equilibrium of infinitesimal element at corner $\mathrm{B}, \tau_{1}=\tau_{2}$
Similarly, at corner C, $\tau_{3}=\tau_{4}$

Steel Structures

Torsion in Hollow Tubes (contd...)

$$
\begin{aligned}
\tau_{1} \times \mathrm{t}_{1}=\tau_{4} \times \mathrm{t}_{2} & \Rightarrow \\
\tau_{2} \times \mathrm{t}_{1}= & \tau_{3} \times \mathrm{t}_{2}
\end{aligned}
$$

Shear stress is more in the portion where thickness is less but $\tau \times \mathrm{t}$ remains constant

The product $\tau \times t$ is referred to as the shear flow, q having units of N / mm. The shear flow remains constant around the perimeter of the tube.

This term comes from an analogy to water flowing in a loop of pipes having different diameters, where the total discharge remains the same.

Steel Structures

Torsion in Hollow Tubes (contd...)
$\tau \times \mathfrak{t}=\mathrm{q}$ (Shear flow)

$$
q_{B}=q_{C}
$$

In general shear flow is same throughout the cross section.
Torsional shear force acting on d s length of wall $=q \times d s$
Resisting moment of this force $=r \times q \times d s$
Integrating this differential resisting torque around the perimeter gives the total resisting torque.

$$
\mathrm{T}=\int_{\mathrm{P}} \mathrm{r} \times \mathrm{q} \times \mathrm{ds}
$$

Steel Structures

Torsion in Hollow Tubes (contd...)

$$
\begin{gathered}
\mathrm{T}=\mathrm{q} \int_{\mathrm{P}} \mathrm{r} \times \mathrm{ds} \\
\mathrm{~T}=2 \mathrm{q} \int_{\mathrm{P}} \frac{\mathrm{r} \times \mathrm{ds}}{2} \\
\mathrm{~T}=2 \mathrm{q} \times \mathrm{A}_{\mathrm{o}}
\end{gathered}
$$

$A_{o}=$ Area enclosed by shear flow path

$$
\mathrm{T}=2 \tau \times \mathrm{t} \times \mathrm{A}_{\mathrm{o}}
$$

$$
\tau=\frac{\mathrm{T}}{2 \mathrm{~A}_{\mathrm{o}} \mathrm{t}} \quad \text { For hollow closed tube }
$$

Steel Structures

Shear Center

"Shear center is defined as the point in the cross-sectional plane of a beam through which the transverse loads must pass so that the beam bends without twisting."

In other words, loads applied through the shear center will cause no torsional stresses to develop.

$$
\begin{gathered}
\int_{0}^{n}(\tau t) r d s=0 \\
\mathrm{~T}=\mathrm{P} \times \mathrm{e} \\
\text { " is from Shear Center }
\end{gathered}
$$

Steel Structures

Shear Center (contd...)

$$
\mathrm{T}=\int^{\mathrm{n}}(\tau \times \mathrm{t}) \times \mathrm{r} \times \mathrm{ds}=0
$$

Closed Thin Walled Section
Magnitude of Shear Flow for Transverse Loads
Through Shear Center

$$
\begin{equation*}
\mathrm{q}=\frac{\mathrm{VQ}}{\mathrm{I}} \tag{1}
\end{equation*}
$$

Valid for sections having $\mathrm{I}_{\mathrm{xy}}=0$
" I " is about the axis of bending
$q=\frac{V_{y}}{I_{x} I_{y}-I_{x y}^{2}}\left(I_{y} \int_{0}^{s} y t d s-I_{x y} \int_{0}^{s} x t d s\right)$
If we put $\mathrm{I}_{\mathrm{xy}}=0$, we will get (1)

Open Thin Walled Section

Steel Structures

Shear Flow In Thin Walled Open Sections Due to Applied Shear Force

Rules For Plotting Shear Flow Diagram

1. The shear flow in the part of element parallel to the applied shear is always in a direction opposite to this applied shear.
2. Shear flow due to direct shear occurs in one direction through thin walls of open sections.
3. At junction of elements, incoming shear flow is equal to outgoing shear flow.

Steel Structures

Rules For Plotting Shear Flow Diagram (contd...)

4. The value of shear flow is zero at free tips of the element and more shear flow is generated as more area is added.
5. Shear flow is assumed to be generated on one side of the neutral axis and consumed/absorbed on the other side.
6. Shear flow generated is proportional to the first moment of the area added.

Steel Structures

7. Shear flow increases linearly for the elements perpendicular to the load and parabolically for the elements parallel to the load.
8. Shear flow is considered zero for elements which have insignificant contribution in corresponding "I" value.

Steel Structures

Rules For Plotting Shear Flow Diagram (conta...)

$$
q_{3}=q_{1}+q_{2}
$$

I_{x} is very small so this portion can be neglected

Steel Structures

General Rules For Locating Shear Center

1. Shear center always lie on axis of symmetry.
2. If two axes of symmetry exist for a section, S.C. will be at the intersection of these two axis.
3. If the centerlines of all the elements of a section intersect at a single point this is the shear center.
4. Shear center of " Z " section is at the centroid.

Steel Structures

Procedure to Locate Shear Center

1. To find horizontal location $\left(e_{x}\right)$ apply vertical load (V) at e_{x} from reference point.
2. Plot shear flow diagram due to applied load.
3. Find the internal shear force in each element.
4. Apply $\sum \mathrm{M}=0$ at convenient location and find e_{x}
5. Similarly apply horizontal load at a vertical distance " e_{y} " from reference point (say centroid) and repeat the above procedure to calculate " e_{y} "
6. The distances " e_{x} " and " e_{y} " locate the shear center.

Steel Structures

Example:
Locate the Shear Center for the given channel section.

Centerline Representation

Steel Structures

Solution

By symmetry about z-axis, the shear center must lie at half the depth. Only horizontal location is to be found.

$$
\mathrm{q}=\frac{\mathrm{VQ}}{\mathrm{I}}
$$

Steel Structures

Point A

$$
\begin{aligned}
Q & =\left(b \times t_{f}\right) \times \frac{h}{2} \\
q_{A} & =\frac{V}{I_{x}}\left(b \times t_{f}\right) \times \frac{h}{2}
\end{aligned}
$$

Point P

$$
\begin{aligned}
& q_{P}=q_{A}+\frac{V}{I_{x}} \times\left(\frac{h}{2} \times t_{w}\right) \times \frac{h}{4} \\
& q_{P}=\frac{V}{I_{x}} \times\left(b t_{f} \times \frac{h}{2}+\frac{h^{2}}{8} \times t_{w}\right)
\end{aligned}
$$

Steel Structures

Solution

Shear force in flange

$$
\begin{gathered}
V_{f}=\frac{1}{2} \times \frac{V}{I_{x}} \times \frac{b t_{f} h}{2} \times b \\
V_{f}=\frac{V}{I_{x}} \times \frac{b^{2} t_{f} h}{4}
\end{gathered}
$$

Shear force in web

$$
\begin{gathered}
V_{w}=\frac{V}{I_{x}} \times \frac{b t_{f} h}{2} \times h+\frac{2}{3}\left(\frac{V}{I_{x}} \times \frac{t_{w} h^{2}}{8} \times h\right) \\
V_{w}=\frac{V}{I_{x}}\left(\frac{b t_{f} h^{2}}{2}+\frac{t_{w} h^{3}}{12}\right)
\end{gathered}
$$

Steel Structures

Solution

$$
\begin{gathered}
\Sigma M_{P}=0 \\
V \times e_{x}-V_{f} \times \frac{h}{2}-V_{f} \times \frac{h}{2}=0 \\
V \times e_{x}=V_{f} \times h \\
e_{x}=\frac{h}{V}\left(\frac{V}{I_{x}} \times \frac{b^{2} t_{f} h}{4}\right) \\
e_{x}=\frac{b^{2} t_{f} h^{2}}{4 I_{x}} \quad \begin{array}{l}
\text { Pos } \\
\text { ass }
\end{array}
\end{gathered}
$$

Positive means on the assumed left side.

Steel Structures

Solution

For vertical location of shear center.

$$
e_{y}=\frac{h}{2}
$$

Applied Torque $=$ Load \times Perpendicular distance from S.C.

Steel Structures

Differential Equation for Torsion of I-Shaped Sections
$\mathrm{u}_{\mathrm{f}}=$ lateral deflection of one of the flanges
$\theta=$ twist angle at the selected section
$\mathrm{V}_{\mathrm{f}}=$ Shear force in flange due to torsion. (internal force developed)
θ is smaller and is in radians, so

$$
\begin{equation*}
u_{\mathrm{f}} \cong \theta \times \frac{\mathrm{h}}{2} \tag{1}
\end{equation*}
$$

Steel Structures

Differential Equation for Torsion of I-Shaped Section (contd...)

The lateral curvature relationship of one flange alone is:

$$
\begin{equation*}
\frac{d^{2} u_{f}}{d z^{2}}=-\frac{M_{f}}{E I_{f}} \tag{2}
\end{equation*}
$$

$\mathrm{M}_{\mathrm{f}}=$ Lateral Bending moment on one flange
$\mathrm{I}_{\mathrm{f}}=$ Moment of inertia of one flange about y -axis of beam

$$
I_{f}=\frac{t_{f} b_{f}^{3}}{12}
$$

Steel Structures

Differential Equation for Torsion of I-Shaped Section (contd...)

$$
\begin{equation*}
V=\frac{d M}{d z} \Rightarrow V_{f}=\frac{d M_{f}}{d z} \tag{3}
\end{equation*}
$$

Differentiating (1)

$$
\begin{gather*}
\frac{d^{3} u_{f}}{d z^{3}}=\frac{-V_{f}}{E I_{f}}- \tag{4}\\
V_{f}=-E I_{f} \frac{d^{3} u_{f}}{d z^{3}}
\end{gather*}
$$

$$
\begin{equation*}
V_{f}=-E I_{f} \frac{(h / 2) d^{3} \theta}{d z^{3}} \longmapsto V_{f}=-E I_{f} \frac{h}{2} \frac{d^{3} \theta}{d z^{3}} \tag{5}
\end{equation*}
$$

Steel Structures

Differential Equation for Torsion of I-Shaped Section (contd...)

Torsion resistance due to warping

$$
\begin{gather*}
M_{w}=V_{f} \times h \\
M_{w}=-E I_{f} \frac{h}{2} \times \frac{d^{3} \theta}{d z^{3}} \times h \\
=-E I_{f} \frac{h^{2}}{2} \times \frac{d^{3} \theta}{d z^{3}} \\
M_{w}=-E C_{w} \times \frac{d^{3} \theta}{d z^{3}} \tag{6}
\end{gather*}
$$

Warping Constant

$$
\begin{gathered}
C_{w}=I_{f} \frac{h^{2}}{2} \\
C_{w}=\frac{t_{f} b_{f}^{3}}{12} \times \frac{h^{2}}{2} \\
C_{w}=\frac{I_{y}}{2} \times \frac{h^{2}}{2} \\
C_{w}=\frac{I_{y} h^{2}}{4}
\end{gathered}
$$

Steel Structures

Differential Equation for Torsion of I-Shaped Section (contd...)

Torsion resistance due to Pure torsion

$$
\begin{array}{|cc|}
\hline M_{s}=G J \times \frac{d \theta}{d z} & \text { OR } \\
\text { For Circular Section } & \text { For Non-Circular Section }
\end{array}
$$

For Circular Section

Total Torque Applied $\quad M_{z}=M_{s}+M_{w}$

$$
\begin{equation*}
\left.M_{z}=G C \times \frac{d \theta}{d z}-E C_{w} \frac{d^{3} \theta}{d z^{3}}\right\} \tag{8}
\end{equation*}
$$

Steel Structures

Differential Equation for Torsion of I-Shaped Section (contd...)
Dividing by " $-E C_{w}{ }^{\prime \prime}$

$$
\begin{gather*}
\frac{d^{3} \theta}{d z^{3}}-\frac{G J}{E C_{w}} \times \frac{d \theta}{d z}=-\frac{M_{z}}{E C_{w}} \tag{9}\\
\frac{d^{3} \theta}{d z^{3}}-\lambda^{2} \frac{d \theta}{d z}=-\frac{M_{z}}{E C_{w}} \tag{10}
\end{gather*}
$$

Non homogeneous differential equation
where

$$
\begin{equation*}
\lambda^{2}=\frac{G C}{E C_{w}} \longmapsto \lambda=\sqrt{\frac{G C}{E C_{w}}} \tag{11}
\end{equation*}
$$

$\lambda^{2}=$ Ratio of pure torsion rigidity to warping torsion rigidity

Steel Structures

Differential Equation for Torsion of I-Shaped Section (contd...)
Total Solution

$$
\theta=\theta_{h}+\theta_{P}
$$

$\theta=$ Total Solution
$\theta_{\mathrm{h}}=$ Homogeneous Solution
$\theta_{\mathrm{P}}=$ Particular Solution
Homogeneous Equation

$$
\frac{d^{3} \theta}{d z^{3}}-\lambda^{2} \frac{d \theta}{d z}=0
$$

Steel Structures

Differential Equation for Torsion of I-Shaped Section (contd...)

Trial Function

$$
\theta_{h}=A e^{m z}
$$

" A ", " m " are constants. " z " is independent variable

$$
\begin{gathered}
\frac{d^{3} \theta}{d z^{3}}=A m^{3} e^{m z} \\
A m^{3} e^{m z}-\lambda^{2} \times A m e^{m z}=0 \\
A e^{m z}\left(m^{3}-\lambda^{2} m\right)=0
\end{gathered}
$$

For non-trivial solution $\quad A \neq 0$

Steel Structures

Differential Equation for Torsion of I-Shaped Section (contd...)

$$
\begin{gathered}
m^{3}-\lambda^{2} m=0 \\
m\left(m^{2}-\lambda^{2}\right)=0
\end{gathered}
$$

Possible Solutions: $m=0, m=+\lambda, m=-\lambda$
Sum of all solutions is total homogeneous solution

$$
\begin{aligned}
\theta_{h} & =A_{1} e^{\lambda z}+A_{2} e^{-\lambda z}+A_{3} e^{o} \\
& =A_{1} e^{\lambda z}+A_{2} e^{-\lambda z}+A_{3}
\end{aligned}
$$

We know

$$
\sinh (x)+\cosh (x)=e^{x} \quad \text { and } \quad \sinh (x)-\cosh (x)=e^{-x}
$$

Steel Structures

Differential Equation for Torsion of I-Shaped Section (contd...)

$$
\begin{gather*}
\theta_{h}=A_{1}[\sinh (\lambda z)+\cosh (\lambda z)]+A_{2}[\cosh (\lambda z)-\sinh (\lambda z)]+A_{3} \\
\theta_{h}=\sinh (\lambda z)\left(A_{1}-A_{2}\right)+\cosh (\lambda z)\left(A_{1}+A_{2}\right)+A_{3} \\
\theta_{h}=A \sinh (\lambda z)+B \cosh (\lambda z)+C \tag{13}
\end{gather*}
$$

Homogeneous solution

Steel Structures

Differential Equation for Torsion of I-Shaped Section (contd...)

Particular solution

Consider M_{z} to be constant or linearly varying along the length
$M_{z}=f(z) \quad$ [Constant or function of first degree]. θ_{p} may assumed to be a polynomial of degree up to 2 , as twist due to pure torque is first integral of moment.
Let

$$
\begin{equation*}
\theta_{P}=f_{1}(z) \tag{14}
\end{equation*}
$$

e.g. $\quad f_{1}(z)=D z^{2}+E z+F$

Uniform torque

Polynomial of second order. One order higher that applied torque.

Steel Structures

Differential Equation for Torsion of I-Shaped Section (contd...)

Try this particular integral in (10)

$$
\begin{gather*}
\frac{d^{3} f_{1}(z)}{d z^{3}}-\lambda^{2} \frac{d f_{1}(z)}{d z}=-\frac{1}{E C_{w}} f(z) \\
\lambda^{2} \frac{d f_{1}(z)}{d z}=\frac{1}{E C_{w}} f(z)
\end{gathered} \quad \begin{gathered}
\text { As } M_{z}=f(z) \\
\text { Polynomial of Ist order } \tag{15}
\end{gather*}
$$

Boundary conditions
1- Torsionally Simply Supported

$$
\theta=0 \quad \frac{d^{2} \theta}{d z^{2}}=0 \quad \frac{d \theta}{d z} \neq 0
$$

Flanges can bend laterally

Steel Structures

Differential Equation for Torsion of I-Shaped Section (contd...)

This is equivalent to deflection and moment made equal to zero for simple support for bending. Change of twist $\mathrm{d} \theta$ / dz may have any value at the end.
Flange may displace at the end but web is held at its position.

2- Torsionally Fixed End

$$
\theta=0 \quad \frac{d^{2} \theta}{d z^{2}} \neq 0 \quad \frac{d \theta}{d z}=0
$$

The constant of integration will be evaluated for individual cases.

Both Flanges and Web are connected

Steel Structures

Differential Equation for Torsion of I-Shaped Section (contd...)

After getting the value of constants and full solution for θ, the stresses may be evaluated as follows:

Pure Torsional Shear Stress

$$
\begin{gather*}
v_{s}=\frac{T r}{C} \\
T=G C \frac{d \theta}{d z} \\
v_{s}=G t \frac{d \theta}{d z} \tag{16}
\end{gather*}
$$

where

Steel Structures

Differential Equation for Torsion of I-Shaped Section (contd...)

Warping Shear Stress

No stress in the web

$$
\begin{gather*}
v_{w}=\frac{V_{f} Q_{f}}{I_{f} t_{f}} \quad \text { From (5) } \\
\left(v_{w}\right)_{\text {max. mag. }}=\frac{\left(E I_{f} \frac{h}{2} \times \frac{d^{3} \theta}{d z^{3}}\right) \times\left(t_{f} \times \frac{b_{f}}{2} \times \frac{b_{f}}{4}\right)}{I_{f} t_{f}} \\
\left(v_{w}\right)_{\text {max. mag. }}=E \frac{b_{f}^{2} h}{16} \frac{d^{3} \theta}{d z^{3}} \tag{16}
\end{gather*}
$$

Steel Structures

Differential Equation for Torsion of I-Shaped Section (contd...)
Normal Warping Stress
(in the flanges)
$\left(M_{f}\right)_{m a g}=E I_{f} \frac{d^{2} u_{f}}{d z^{2}} \quad \square\left(M_{f}\right)_{m a g}=E I_{f} \frac{h}{2} \frac{\mathrm{~d}^{2} \theta}{\mathrm{dz}^{2}}$

$$
\left(M_{f}\right)_{m a g}=E \frac{C_{w}}{h} \frac{\mathrm{~d}^{2} \theta}{\mathrm{dz}^{2}}
$$

$$
\left(f_{b w}\right)_{\max }=\frac{E I_{f} \frac{h}{2} \frac{d^{2} \theta}{d z^{2}} \times \frac{b_{f}}{2}}{I_{f}} \rightleftarrows\left(f_{b w}\right)_{\max }=E \frac{h b_{f}}{4} \frac{d^{2} \theta}{d z^{2}}
$$

Steel Structures

DESIGN AND ALLOWABLE TORSION STRENGTHS

The design and allowable torsion strengths are below:

Design torsional strength in LRFD

$$
=\phi_{\mathrm{t}} T_{\mathrm{n}}
$$

Allowable torsional strength in ASD
$=T_{\mathrm{n}} / \Omega_{\mathrm{t}}$
Resistance factor for torsion in LRFD
$=\phi_{t}=0.9$
Safety factor for torsion in ASD
$=\Omega_{t}=1.67$

Steel Structures

The nominal torsional strength (T_{n}) according to the limit states of torsional yielding and torsional buckling is:

$$
T_{\mathrm{n}}=F_{\mathrm{n}} C
$$

The following nomenclature may be used in the further discussion:
$\begin{aligned} C & =\text { torsion constant } \\ & =2(B-t)(H-t)-4.5(4-\pi) t^{3} \quad \text { for } \\ & \text { rectangular HSS }\end{aligned}$

Steel Structures

$C=\frac{\pi(D-t)^{2} t}{2}$ for round HSS
$B \quad=\quad$ overall width of rectangular HSS
$H=$ overall height of HSS
$h=$ clear distance between the flanges less the inside corner radius on each side
$D \quad=\quad$ outside diameter of round HSS
$L \quad=\quad$ length of the member

Steel Structures

F_{n} For Round HSS
$F_{\mathrm{n}}=F_{\mathrm{cr}}=$ larger of $\frac{1.23 E}{\sqrt{\frac{L}{D}\left(\frac{D}{t}\right)^{5 / 4}}}$ and $\frac{0.60 E}{\left(\frac{D}{t}\right)^{3 / 2}}$
but the value should not exceed $0.6 F_{y}$
F_{n} For Rectangular HSS
i) For $\frac{h}{t} \leq 2.45 \sqrt{\frac{E}{F_{y}}}$

$$
F_{\mathrm{n}}=F_{\mathrm{cr}}=0.6 F_{\mathrm{y}}
$$

Steel Structures

ii) For $2.45 \sqrt{\frac{E}{F_{y}}}<\frac{h}{t} \leq 3.07 \sqrt{\frac{E}{F_{y}}}$

$$
F_{\mathrm{n}}=F_{\mathrm{cr}}=0.6 F_{y}\left(2.45 \sqrt{\frac{E}{F_{y}}}\right) \frac{h}{t}
$$

iii) For $3.07 \sqrt{\frac{E}{F_{y}}}<\frac{h}{t} \leq 260$

$$
F_{\mathrm{n}}=F_{\mathrm{cr}}=\frac{0.458 \pi^{2} E}{(h / t)^{2}}
$$

Steel Structures

$F_{\boldsymbol{n}}$ For Other Sections

a) For the limit state of yielding under normal stress:
$F_{\mathrm{n}}=F_{\mathrm{y}}$
b) For the limit state of shear yielding under shear stress:
$F_{\mathrm{n}}=0.6 F_{\mathrm{y}}$
c) For the limit state of buckling
$F_{\mathrm{n}}=F_{\mathrm{cr}}$
where $F_{\text {cr }}$ for buckling is to be determined by detailed analysis.

Steel Structures

Example:

A W460 x 106 simply supported beam of span 7.5 m is subjected to a concentrated load of 90 kN at mid-span at an eccentricity of 50 mm from the plane of the web. The ends of the member are simply supported with respect to torsional restrain. Develop the expression for the angle θ and compute combined bending and torsional stresses.

Steel Structures

Solution:

Steel Structures

Solution: (contd...)

$$
\begin{gathered}
f(z)=T / 2 \\
T=P \times e=90 \times 50 \\
=4500 \mathrm{kN}-\mathrm{mm}
\end{gathered}
$$

$$
\theta_{P}=C_{1}+C_{2} z=f_{1}(z)
$$

- One order ahead
$\frac{d^{3} f_{1}(z)}{d z^{3}}-\lambda^{2} \frac{d f_{1}(z)}{d z}=-\frac{1}{E C_{w}} f(z)$
where

$$
\lambda^{2}=\frac{G J}{E C_{w}}
$$

$$
\begin{gathered}
0-\lambda^{2}\left(C_{2}\right)=-\frac{1}{E C_{w}} \frac{T}{2} \\
C_{2}=\frac{T}{2} \frac{1}{E C_{w}} \times \frac{E C_{w}}{G J}=\frac{T}{2 G C}
\end{gathered}
$$

So, the particular solution is:

$$
\theta_{P}=C_{1}+\frac{T}{2 G C} \times z
$$

Steel Structures

Solution: (contd...)
The total solution is

$$
\theta=A \sinh (\lambda z)+B \cosh (\lambda z)+C+C_{1}+\frac{T}{2 G C} \times z
$$

$$
\theta=A \sinh (\lambda z)+B \cosh (\lambda z)+\frac{T}{2 G C} \times z+C
$$

Boundary Conditions

$$
\begin{array}{ll}
\mathrm{Z}=0, \quad \theta=0 & \text { (I) } \quad z=\frac{L}{2}, \quad \frac{d \theta}{d z}=0 \\
z=0, \quad \frac{d^{2} \theta}{d z^{2}}=0 & \text { (II) } \quad .
\end{array}
$$

Steel Structures

Solution: (contd...)
To apply the boundary condition first we have to take $I^{\text {st }}$ and $2^{\text {nd }}$ derivatives

$$
\begin{aligned}
& \frac{d \theta}{d z}=A \lambda \cosh (\lambda z)+B \lambda \times \sinh (\lambda z)+\frac{T}{2 G C} \\
& \frac{d^{2} \theta}{d z^{2}}=A \lambda^{2} \sinh (\lambda z)+B \lambda^{2} \times \cosh (\lambda z) \\
& \frac{d^{3} \theta}{d z^{3}}=A \lambda^{3} \cosh (\lambda z)+B \lambda^{3} \times \sinh (\lambda z) \\
& (\mathrm{I}) \Rightarrow 0=0+\mathrm{B}+0+\mathrm{C} \longrightarrow \mathrm{~B}+\mathrm{C}=0 \\
& (\mathrm{II}) \Rightarrow 0=0+\mathrm{B} \lambda^{2} \times 1 \quad \longrightarrow \mathrm{~B}=0 \\
& \\
& \square \mathrm{C}=0
\end{aligned}
$$

Steel Structures

Solution: (contd...)
$(\mathrm{III}) \Rightarrow \quad 0=A \lambda \cosh \left(\lambda \frac{L}{2}\right)+0+\frac{T}{2 G C}$

$$
\begin{array}{r}
A=-\frac{T}{2 G C \lambda}\left(\frac{1}{\cosh \frac{\lambda L}{2}}\right) \\
\theta=\frac{-T}{2 G C \lambda}\left(\frac{1}{\cosh (\lambda L / 2)}\right) \times \operatorname{Sinh}(\lambda z)+\frac{T}{2 G C} z
\end{array}
$$

Steel Structures

Solution: (contd...)

$$
\begin{gathered}
\theta=\frac{T}{2 G C \lambda}\left(\lambda z-\frac{\sinh (\lambda z)}{\cosh (\lambda L / 2)}\right) \\
\frac{d \theta}{d z}=\frac{T}{2 G C \lambda}\left(\lambda-\frac{\lambda \cosh (\lambda z)}{\cosh (\lambda L / 2)}\right) \\
\frac{d \theta}{d z}=\frac{T}{2 G C}\left(1-\frac{\cosh (\lambda z)}{\cosh (\lambda L / 2)}\right) \\
\frac{d^{2} \theta}{d z^{2}}=\frac{T \lambda}{2 G C}\left(\frac{-\sinh (\lambda z)}{\cosh (\lambda L / 2)}\right) \quad \frac{d^{3} \theta}{d z^{3}}=\frac{T \lambda^{2}}{2 G C}\left(-\frac{\cosh (\lambda z)}{\cosh (\lambda L / 2)}\right)
\end{gathered}
$$

Steel Structures

Solution: (contd...)

W 460×106

$$
\begin{array}{ll}
S_{x}=2080 \times 10^{3} \mathrm{~mm}^{3} & h=d-t_{f}=448.4 \mathrm{~mm} \\
I_{x}=48,700 \times 10^{4} \mathrm{~mm}^{4} & \mathrm{t}_{\mathrm{f}}=20.6 \mathrm{~mm} \\
C=J=145 \times 10^{4} \mathrm{~mm}^{4} & \mathrm{t}_{\mathrm{w}}=12.6 \mathrm{~mm} \\
C_{w}=12,62,119 \times 10^{6} \mathrm{~mm}^{6} & \mathrm{~b}_{\mathrm{f}}=194 \mathrm{~mm} \\
1 / \lambda=1501 \mathrm{~mm} & d=469 \mathrm{~mm} \\
L=7500 \mathrm{~mm} &
\end{array}
$$

Steel Structures

Solution: (contd...)

z	λz	$\operatorname{Sinh}(\lambda z)$	$\operatorname{Cosh}(\lambda z)$
0	0	0	1.000
0.1 L	0.5	0.521	1.128
0.2 L	0.999	1.174	1.542
0.3 L	1.499	2.127	2.350
0.4 L	1.999	3.623	3.759
0.5 L	2.498	6.038	6.120

$$
\begin{aligned}
& \mathrm{G}=\frac{\mathrm{E}}{2(1+\mathrm{v})}=\frac{2,00,000}{2(1+0.3)}=76,923 \mathrm{MPa} \\
& \quad G C=76,923 \times 145 \times 10^{4}=1115 \times 10^{8} \mathrm{~N}-\mathrm{mm}^{2}
\end{aligned}
$$

Steel Structures

Solution: (contd...)
Pure Torsional Shear Stress

$$
\begin{aligned}
& v_{s}=G t \frac{d \theta}{d z} \\
& v_{s}=\frac{T t}{2 J}\left(1-\frac{\cosh (\lambda z)}{\cosh (\lambda L / 2)}\right) \\
& v_{s}=\frac{4500 \times 1000 t}{2 \times 145 \times 10^{4}}\left(1-\frac{\cosh (\lambda z)}{\cosh (2.49)}\right) \\
& v_{s}=1.552 t\left(1-\frac{\cosh (\lambda z)}{6.120}\right)
\end{aligned}
$$

Steel Structures

Solution: (contd...)
Maximum pure torsional shear stress is at the ends

$$
\begin{aligned}
& \left(v_{s}\right)_{\max _{z=0, L} .}=1.55 t\left(1-\frac{\cosh (\lambda \times 0)}{6.120}\right) \\
& \left(v_{s}\right)_{\substack{\max _{z=0, L}}}=1.297 t \\
& \left(v_{s}\right)_{\substack{\max .}}=1.297 t_{f}=1.297 \times 20.6=26.72 \mathrm{MPa} \\
& \left(v_{s}\right)_{\substack{\operatorname{morfange}}}=1.297 t_{w}=1.297 \times 12.6=16.34 \mathrm{MPa}
\end{aligned}
$$

Steel Structures

Solution: (contd...)

Warping Shear Stress

In flanges

$$
\begin{aligned}
\left(v_{w}\right)_{\max } & =\frac{E b_{f}^{2} h}{16} \frac{d^{3} \theta}{d z^{3}} \\
& =\frac{E b_{f}^{2} h}{16} \times \frac{T \lambda^{2}}{2 G C}\left(-\frac{\cosh (\lambda z)}{\cosh (\lambda L / 2)}\right) \\
& =\frac{T}{2 C_{w}} \frac{b_{f}^{2} h}{16}\left(-\frac{\cosh (\lambda z)}{6.12}\right) \\
& =-0.307 \cosh (\lambda z)
\end{aligned}
$$

Steel Structures

Solution: (contd...)
Along the length maximum value will occur at $\mathrm{z}=\mathrm{L} / 2$

$$
\begin{aligned}
& \begin{aligned}
&\left(v_{w}\right)_{\max } \text { at midspan } z_{z=L / 2}=-0.307 \cosh \left(\lambda \times \frac{L}{2}\right) \\
&=-1.88 \mathrm{MPa} \\
&\left(v_{w}\right) \text { at ends } \\
& z=0 \\
&=-0.31 \mathrm{MPa}
\end{aligned}
\end{aligned}
$$

Steel Structures

Solution: (contd...)
Normal Warping Stress

$$
\begin{aligned}
& \left(f_{b w}\right)_{\max }=\frac{E b_{f} h}{4} \frac{d^{2} \theta}{d z^{2}} \\
& \left(f_{b w}\right)_{\max }=\frac{E b_{f} h}{4} \times \frac{T \lambda}{2 G C}\left(-\frac{\sinh (\lambda z)}{6.12}\right) \\
& \left(f_{b w}\right)_{\max }=-9.56 \sinh (\lambda z)
\end{aligned}
$$

As flanges are simply supported at ends, the maximum stress will be at mid-span

$$
\left(f_{b w}\right)_{\max }=-9.56 \sinh \left(\lambda \times \frac{L}{2}\right)=-57.69 M P a
$$

Steel Structures

Solution: (contd...)
Maximum Normal Stress due to Ordinary Flexure

$$
\begin{aligned}
f_{b} & =\frac{M}{S_{x}}=\frac{P L / 4}{S_{x}} \\
& =\frac{90,000 \times 7500 / 4}{2080 \times 10^{3}}
\end{aligned}
$$

$$
f_{b}=81.13 M P a
$$

Steel Structures

Solution: (contd...)
Shear Stress due to Ordinary Bending

$$
v=\frac{V Q}{I b}
$$

At the N.A.:

$$
v=\frac{45000\left(194 \times 20.6 \times \frac{448.4}{2}+12.6 \times \frac{427.8}{2} \times \frac{427.8}{4}\right)}{48,700 \times 10^{4} \times 12.6}
$$

$$
v=8.68 \mathrm{MPa}
$$

Steel Structures

Solution: (contd...)

At face of Web:

With in flange at edge of web

$$
v=\frac{V Q}{I b}
$$

$v=\frac{45000\left(\frac{194-12.6}{2} \times 20.6 \times \frac{448.4}{2}\right)}{48,700 \times 10^{4} \times 12.6}=1.88 \mathrm{MPa}$

$$
v=1.88 M P a
$$

Steel Structures

Summary of Stresses

Type of Stress	Support	Mid Span
Normal Stress - Vertical Bending, f_{b} - Torsional Bending, f_{bw}	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 81.13 \\ & 57.69 \\ & \text { Sum }=138.82 \mathrm{MPa}<0.9 \times 250=225 \\ & \text { MPa O.K. } \end{aligned}$
Shear Stress in Web - Pure Torsion, v_{s} - Vertical Bending, v	$\begin{aligned} & 16.34 \\ & 8.68 \\ & \text { Sum }=25.02 \mathrm{MPa} \\ & <0.9 \times 0.6 \times 250=135 \mathrm{OK} \end{aligned}$	$\begin{array}{\|l} 0 \\ 8.68 \\ \text { Sum }=8.68 \mathrm{MPa} \\ <0.9 \times 0.6 \times 250=135 \mathrm{OK} \end{array}$
Shear Stress in Flange - Pure Torsion, v_{s} - Warping Torsion, v_{w} - Vertical Bending, v	$\begin{aligned} & 26.72 \\ & 0.31 \\ & 1.88 \\ & \text { Sum }=28.91 \mathrm{MPa} \\ & <135 \mathrm{MPa} \end{aligned}$	$\begin{aligned} & 0 \\ & 1.88 \\ & 1.88 \\ & \text { Sum }=\mathbf{3 . 7 6} \mathbf{~ M P a}<\mathbf{1 3 5} \mathbf{~ M P a}, \quad \text { O.k. } \end{aligned}$

Results: Beam is safe in flexure, torsion and shear at all the sections

Steel Structures

Analogy Between Warping Torsion and Lateral Bending

$$
\begin{aligned}
& P_{\mathrm{H}} \times h=T \\
& P_{\mathrm{H}}=T / h
\end{aligned}
$$

Steel Structures

Analogy For Torsion (conta...)

- Because the differential equation solution is time consuming, and really suited only for analysis, design of a beam to include torsion is most conveniently done by making the analogy between torsion and ordinary bending
- It is assumed that all the torque is resisted by warping torsion which is not the actual situation (solution will be approximate).
- $\quad \beta$ factor is used to reach near to actual solution.
- $\quad \beta$ factors are problem specific values, depending on end conditions.
- Tables have been proposed for β factor to cover different situations.
- β factor tables are available on Page \# 476 \& 477, (Salmon \& Johnson)

Steel Structures

Analogy For Torsion (contd...)

Steel Structures

Example:

Select a W section for a beam to carry $9 \mathrm{kN} / \mathrm{m}$ dead load including the self weight, and a live load of $24 \mathrm{kN} / \mathrm{m}$. The load is applied at an eccentricity of 175 mm from center of web. The simply supported span is 8.0 m . Assume that ends of beam are simply supported for torsion.

Solution:

$$
\begin{aligned}
w_{u} & =1.2 D+1.6 L \\
& =1.2 \times 9+1.6 \times 24 \\
& =49.2 \mathrm{kN} / \mathrm{m}
\end{aligned}
$$

Steel Structures

Solution: (contd...)

$$
w_{u}=49.2 \mathrm{kN} / \mathrm{m}
$$

Steel Structures

Solution: (contd...)

$$
\begin{gathered}
M_{u x}=\frac{49.2 \times 8.0^{2}}{8}=393.60 \mathrm{kN}-\mathrm{m} \\
m_{u}=49.2 \times \frac{175}{1000}=8.61 \mathrm{kN}-\mathrm{m} / \mathrm{m} \\
d_{\min }=\frac{L}{22}=\frac{8000}{22}=364 \mathrm{~mm} \\
\text { Let } \quad h \cong 364 \mathrm{~mm}
\end{gathered}
$$

Assume

$$
\lambda \mathrm{L}=3.0 \text { Initial assumption }
$$

Steel Structures

Solution: (contd...)

$$
\begin{aligned}
& M_{f}=\beta \frac{w_{H} L^{2}}{8} \\
& M_{f}=\beta \frac{m_{u}}{h} \times \frac{L^{2}}{8} \quad w_{H}=\frac{m_{u}}{h}
\end{aligned}
$$

$\mathrm{z}=0.5 \mathrm{~L}, \mathrm{a}=0.5$
From table 8.6.8, P \# 477

$$
\begin{gathered}
\lambda L=3 \Rightarrow \beta=0.51 \\
M_{f}=0.51 \times \frac{8.61}{0.364} \times \frac{8.0^{2}}{8}=96.51 \mathrm{kN}-\mathrm{m}
\end{gathered}
$$

Steel Structures

Solution: (contd...)

$$
\begin{gathered}
\left(S_{x}\right)_{r e q}=\frac{M_{u x}}{\phi_{b} F_{y}}+\frac{2 M_{f}\left(S_{x} / S_{y}\right)}{\phi_{b} F_{y}} \\
\left(S_{x}\right)_{\text {req }}=\frac{393.60 \times 10^{6}}{0.9 \times 250}+\frac{2 \times 96.51 \times 10^{6}\left(\frac{1}{2.75}\right)}{0.9 \times 250} \\
\left(S_{x}\right)_{r e q}=4109 \times 10^{3} \mathrm{~mm}^{3}
\end{gathered}
$$

Steel Structures

Solution: (contd...)

Where high torsional strength is required, W360 sections are preferable because these usually give less stresses due to torsional warping. compact section

Trial Section

W 360×237

$$
\begin{array}{lll}
\mathrm{b}_{\mathrm{f}}=395 \mathrm{~mm} & \mathrm{~b}_{\mathrm{f}} / 2 \mathrm{t}_{\mathrm{f}}=6.5 & \mathrm{I}_{\mathrm{y}}=31100 \times 10^{4} \mathrm{~mm}^{4} \\
\mathrm{t}_{\mathrm{f}}=30.2 \mathrm{~mm} & \mathrm{~h} / \mathrm{t}_{\mathrm{w}}=13.7 & \mathrm{t}_{\mathrm{w}}=18.9 \mathrm{~mm} \\
\mathrm{~S}_{\mathrm{y}}=1580 \times 10^{3} \mathrm{~mm}^{3} & \mathrm{~d}=380 \mathrm{~mm} & C=J=824 \times 10^{4} \mathrm{~mm}^{4} \\
\mathrm{~S}_{\mathrm{x}}=4160 \times 10^{3} \mathrm{~mm}^{3} & \mathrm{I}_{\mathrm{x}}=79100 \times 10^{4} \mathrm{~mm}^{4} & 1 / \lambda=1735 \mathrm{~mm}
\end{array}
$$

Steel Structures

Solution: (contd...)

Assuming that $\mathrm{L}_{\mathrm{b}} \leq \mathrm{L}_{\mathrm{p}}$, no problem of LTB

$$
\begin{aligned}
& \lambda \mathrm{L}=\frac{1}{1735} \times 8000=4.61 \\
& \beta= 0.27+\frac{0.37-0.27}{1} \times(5.0-4.61)=0.309 \\
& h=d-t_{f}=380-30.2=349.8 \mathrm{~mm} \\
& \cline { 2 - 3 }=\beta \frac{m_{u}}{h} \times \frac{L^{2}}{8} \\
&=0.309 \times 8.61 \times \frac{8.0^{2}}{8} \times \frac{1}{0.3498}=60.85 \mathrm{kN}-\mathrm{m} \\
& \hline
\end{aligned}
$$

Steel Structures

Solution: (contd...)

Normal Bending Stress At Mid-span

$$
\begin{aligned}
f_{u n}= & \frac{M_{u x}}{S_{x}}+\frac{2 M_{f}}{S_{y}} \\
& =\frac{393.60 \times 10^{6}}{4160 \times 10^{3}}+\frac{2 \times 60.85 \times 10^{6}}{1580 \times 10^{3}} \\
= & 171.64 M P a \\
& <\phi_{b} F_{y}=225 M P a \quad \text { О.К. }
\end{aligned}
$$

Steel Structures

Solution: (contd...)

Shear Stress

- Warping torsion............Critical at center
- Vertical bending............Critical at ends
- Pure torsion..................Critical at ends.

Warping Shear Stress At Mid-Span:

$$
\begin{gathered}
v_{w}=\frac{V_{f} Q_{f}}{I_{f} t_{f}} \\
V_{f}=\beta \frac{m_{u}}{h}=0.309 \times \frac{8.61 \times 1000}{0.3498}=7606 \mathrm{~N}
\end{gathered}
$$

Steel Structures

Solution: (contd...)

$$
\begin{array}{cc}
Q_{f}=\frac{b_{f}}{2} \times t_{f} \times \frac{b_{f}}{4}=589 \times 10^{3} \mathrm{~mm}^{3} & \\
I_{f}=\frac{I_{y}}{2}=15550 \times 10^{4} \mathrm{~mm}^{4} & \square \\
v_{w}=\frac{7606 \times 589 \times 10^{3}}{15550 \times 10^{4} \times 18.9}=1.524 \mathrm{MPa} & <135 \mathrm{MPa} \\
& \\
\hline
\end{array}
$$

Total shear stress $=1.524 \mathrm{MPa}$, because there is no applied shear at the center and there is no simple torsion O.K.

Steel Structures

Solution: (contd...)

Web Shear Stress (end section):

$$
v=\frac{(w L / 2) \times Q}{I_{x} \times t_{w}}
$$

$$
\begin{aligned}
Q & =\left(b_{f} \times t_{f} \times \frac{h}{2}\right)+t_{w}\left(\frac{h-t_{f}}{2}\right) \times\left(\frac{h-t_{f}}{4}\right)=2328 \times 10^{3} \mathrm{~mm}^{3} \\
v & =\frac{(49.2 \times 8.0 / 2) \times 1000 \times 2328 \times 10^{3}}{79100 \times 10^{4} \times 18.9} \\
& =30.65 \mathrm{MPa}
\end{aligned}
$$

Steel Structures

Solution: (contd...)

Pure Torsion (end section):

$$
\begin{aligned}
v_{s} & =\frac{T \times t_{w}}{C} \\
T & =\frac{m_{u} L}{2}=34.44 \mathrm{kN}-\mathrm{mm} \\
v_{s} & =\frac{34.44 \times 10^{6} \times 18.9}{824 \times 10^{4}}=79.00 \mathrm{MPa}
\end{aligned}
$$

Total Shear stress at end section $=30.65+79.00=109.65 \mathrm{MPa}$ $<135 \mathrm{MPa}$ О.K.

Steel Structures

Flange Shear Stress (end section):

$$
v=\frac{(w L / 2) \times Q}{I_{x} \times t_{w}}
$$

At Junction of Web and Flange

$$
\begin{aligned}
Q=\frac{b_{f}}{2} & \times t_{f} \times \frac{b_{f}}{4}=1043 \times 10^{3} \mathrm{~mm}^{3} \\
v & =\frac{196.8 \times 1000 \times 1043 \times 10^{3}}{79100 \times 10^{4} \times 30.2} \\
& =8.59 \mathrm{MPa}
\end{aligned}
$$

Steel Structures

Pure Torsion (end section):

$$
\begin{aligned}
v_{s} & =\frac{T \times t_{w}}{C} \\
T & =\frac{m_{u} L}{2}=34.44 \mathrm{kN}-\mathrm{mm} \\
v_{s} & =\frac{34.44 \times 10^{6} \times 30.2}{824 \times 10^{4}}=113.62 \mathrm{MPa}
\end{aligned}
$$

Total shear stress at end section $=v+v_{\mathrm{s}}+v_{\mathrm{s}}$

$$
\begin{aligned}
=8.59 & +113.62+0=122.21 M P a \\
& <135 \mathrm{MPa} \text { O.K. }
\end{aligned}
$$

Steel Structures

	Table. Values of λ and C	
Designation	$1 / \lambda$	$C=J\left(\times 10^{4} \mathrm{~mm}^{4}\right)$
W360 $\times 216$	1869	633
$\times 237$	1735	824
$\times 262$	1600	1100
$\times 287$	1483	1450
$\times 314$	1389	1860
$\times 347$	1288	2480
$\times 382$	1196	3290
$\times 421$	1118	4330
463	1046	5660
$\times 509$	980	7410
555	932	9240
$\times 592$	892	11400
634	853	13800

Steel Structures

0000000

Concluded

