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Steel Structures
Torque

Moment about longitudinal axis
Corresponding deformation produced is twist or 
torsion.

τ

τT, Twisting Moment

τ

τ

Torque can be resisted in two different ways

1. Pure Torsion (St. Venant Torsion)

2. Warping Torsion
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Pure Torsion
In this case the various cross-sections along the length of the 
member rotate relative to each other causing twist of the member. 

Any particular cross section twists as a whole
Typical example is the torque applied on a circular rod.

Warping Torsion
The whole cross-sections do not rotate as a whole 

z
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Warping Torsion (contd…) C T

T C

Under the Action of Torque

Plane section do not remain plane in 
warping torsion
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Torsion Formula for Circular Section
(Pure Torsion)

1. Plane section remains plane.

2. Radial lines remain straight.

3. Moment is applied along longitudinal axis.

4. Material remains elastic.
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Torsion Formula for Circular Section (contd…)

θ = total rotation of any 
section w.r.t. the reference 
point.
φ = change of angle per unit 
length
φ = θ/L for linear increase
φ = dθ/dz  in general
ρ = radial distance up to any 
point where stresses are to be 
calculated.
τ = shear stress at any point
γ = shear strain at any point

L dz

T

θ 

A

C

B

O

Helix, deformed position 
of line AB after twist

Tr
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Torsion Formula for Circular Section (contd…)

Shear stress due to pure torsion is always 
perpendicular to the redial distance at that 
point. r

ρ 

τ

dz
ρdθγ =

dz
'C'Bγ =

Reference 
point

dθ 

C’

B’
γ 

dz

dz
dθργ = ρϕ= ργ
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Torsion Formula for Circular Section (contd…)

dAτρdT ×= GJ×= φT

( ) AdγGρ×= γGτ =Q GJ = torsional rigidity

yx IIJ += For circular section( ) AGdρρ ××= φ
Now γGτ =AGdρ2 ××= φ

∫ ××==
A

r ATT Gdρ2 φ

∫×=
A

AT dρG 2φ

G
GJ
Tρτ 






=

J
ρTτ ×

=
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Torsion Formula for Circular Section (contd…)

ρτ ∝

J
Trτ   max = Shear stress 

due to torsion
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Pure Torsion For Non-Circular Section
(Experimental Method)
Soap Film Analogy Slope at any point is equal to shear 

stress at that point
The volume between the bubble 
and the original plane (by the 
analogy of governing  differential 
equation) is proportional to the 
total torque resistance (applied). 
Steeper the slope of tangent at any 
point greater will be the shear 
stress.
SFA is more useful for noncircular
and irregular section for which 
formulas are difficult to derive. AIR
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Pure Torsion For Non-Circular Section
Soap Film Analogy (contd…)

x

y

At the 
mid of 
Longer 

sideSquare Cross Section

Tmax

When material behaves        
in-elastically

Rectangular Cross Section
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Pure Torsion For Non-Circular Section
Soap Film Analogy (contd…)

At one section , two 
directional shear is 
present, GIVING 
RESISTING 
TORQUE

Soap Film
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Pure Torsion For Non-Circular Section
By Timoshenko

C, Torsion constant 
depends on b/t ratio.

3bt
Tt
αmax =τ

C
Tt=

α

α

3
bt 3

=

3
btC

3

Σ=

For section consisting of 
more than one rectangular

α = 1/3 for practical section 
with large b/t ratio.

Valid for Rectangular Section only

t ( smaller side)

b

1/3.290.267.246.219.208

∞5.03.02.01.51.0b/t
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Plastic Torsion
Whole the section will yield in torsion, τ = τy
Plastic analysis assumes uniform shear intensity all 
around the surface and all around the cross section.

Plastic torsions can be envisioned in 
terms of SAND HEAP ANALOGY

τ y
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Sand Heap Analogy

Put sand on a plate having a shape same as that of cross section
(Circular, Rectangular, Irregular)

Slope of sand 
heap is constant 
everywhere as
τ= τ y
throughout
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Sand Heap Analogy (contd…)

3max bt
Tt

pα
p =τ

Volume under the sand heap is proportional to the torque.

αp = 0.33 for b/t = 1.0
= 0.5 for  b/t = ∞
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Torsion in Hollow Tubes
A

B

D C

r

ds

A B

τ2

τ1

τ3

VBC

VDA

t1

t2

τ1

z

T

dz

VAB

τ2τ4

τ1=τ2D CVDC
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Torsion in Hollow Tubes
V = Resultant shear force at a face

τ1 remains constant throughout the length 

dzVAB ××= 11 tτ
dzVCD ××= 24 tτ

CDABz VVF =⇒=∑ 0 To maintain equilibrium

2411 tτtτ ×=×
For equilibrium of infinitesimal element at corner B,  τ1 = τ2

Similarly, at corner C,  τ3 = τ4
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Torsion in Hollow Tubes (contd…)

2312 tτtτ ×=×
Shear stress is more in  the portion where thickness is less but τ x t
remains constant 

⇒×=× 2411 tτtτ

The product  τ × t is referred to as the shear flow, 
q having units of N/mm.  The shear flow remains 
constant around the perimeter of the tube.  

This term comes from an analogy to water flowing 
in a loop of pipes having different diameters, 
where the total discharge remains the same.
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Torsion in Hollow Tubes (contd…)

qtτ =× (Shear flow) 

CB qq =
In general shear flow is same throughout the cross section.

Torsional shear force acting on ds length of wall  =  q × ds

Resisting moment of this force  =  r × q × ds

Integrating this differential resisting torque around the perimeter 
gives the total resisting torque.

∫ ××=
P

dsqrT
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Torsion in Hollow Tubes (contd…)

∫ ×=
P

dsrqT

∫
×

=
P 2

dsrq2T
r

r
ds

oAq2T ×=

Ao = Area enclosed by shear flow path

oAtτ2T ××=

t2A
Tτ

o

= For hollow closed tube
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Shear Center
“Shear center is defined as the point in the cross-sectional plane of a 
beam through which the transverse loads must pass so that the beam 
bends without twisting.”

ePT ×=
Pe

S.C.

In other words, loads applied through the shear center will cause no 
torsional stresses to develop.

0)(
0

=∫ dsrt
n

τ

“e” is from Shear Center
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Shear Center (contd…)

r

ds( )∫ =×××=
n

0

0dsrtτT

Magnitude of Shear Flow for Transverse Loads 
Through Shear Center

Closed Thin Walled Section

I
VQq = (1)         Valid for sections having Ixy = 0

“I” is about the axis of bending









−

−
= ∫ ∫

s

0

s

0
xyy2

xyyx

y xtdsIytdsI
III

V
q

Open Thin Walled SectionIf we put Ixy = 0, we will get (1)    
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Shear Flow In Thin Walled Open Sections 
Due to Applied Shear Force
Rules For Plotting Shear Flow Diagram

1. The shear flow in the part of element parallel 
to the applied shear is always in a direction 
opposite to this applied shear. 

2. Shear flow due to direct shear occurs in one 
direction through thin walls of open sections.

3. At junction of elements, incoming shear flow 
is equal to outgoing shear flow. 
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Rules For Plotting Shear Flow Diagram (contd…)

4. The value of shear flow is zero at free tips of 
the element and more shear flow is generated 
as more area is added. 

5. Shear flow is assumed to be generated on one side of 
the neutral axis and consumed/absorbed on the other 
side.

6. Shear flow generated is proportional to the first 
moment of the area added.
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7. Shear flow increases linearly for the elements 
perpendicular to the load and parabolically  for 
the elements parallel to the load.

8. Shear flow is considered zero for elements which 
have insignificant contribution in corresponding 
“I” value. 
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Rules For Plotting Shear Flow Diagram (contd…)

Ix is very small so this portion 
can be neglected 

Applied Load

x
q3

q1 q2

q3 = q1 + q2



Steel Structures
General Rules For Locating Shear Center

1. Shear center always lie on axis of symmetry.

2. If two axes of symmetry exist for a section, S.C. will be 
at the intersection of these two axis.

3. If the centerlines of all the elements of a section 
intersect at a single point this is the shear center. 

4. Shear center of “Z” section is at the centroid.  

Shear Center

Shear Center
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Procedure to Locate Shear Center

1. To find horizontal location (ex) apply vertical load (V) 
at ex from reference point. 

2. Plot shear flow diagram due to applied load.

3. Find the internal shear force in each element.

4. Apply ∑M = 0 at convenient location and find ex

5. Similarly apply horizontal load at a vertical distance 
“ey” from reference point (say centroid) and repeat the 
above procedure to calculate “ey”

6. The distances “ex”and “ey” locate the shear center. 
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Example:
Locate the Shear Center for the given channel section. 

tf

tw

bf 2
tbb w

f −=

ftdh −=d

Centerline Representation
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Solution

By symmetry about z-axis, the shear center must lie at 
half the depth. Only horizontal location is to be found.

I
VQq =

V

ex

A

P

V

qA

qP
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( )
2
htbQ f ××=

( )
2
htb

I
Vq f

x
A ××=

Point A

42
hth

I
Vqq w

x
AP ×






 ××+=

Point P









×+××= wf

x
P thhbt

I
Vq

82

2
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Solution

b
hbt

I
VV f

x
f ×××=

22
1

Shear force in flange

4

2 htb
I
VV f

x
f ×=

Shear force in web









××+××= hht

I
Vh

hbt
I
VV w

x

f

x
w 83

2
2

2











+=

122

32 hthbt
I
VV wf

x
w

V

P

Vf

Vw

Vf

ex
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Solution

P

Vf

Vw

Vf
0=Σ PM V

0
22

=×−×−×
hVhVeV ffx

exhVeV fx ×=×











×=

4

2 htb
I
V

V
he f

x
x

x

f
x I

htb
e

4

22

= Positive means on the 
assumed left side.
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Solution

P

Vf
Vw

VfVw

N.A.

For vertical location of shear center.

2
hey =

V

ey

Applied Torque = Load x Perpendicular distance from S.C.
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Differential Equation for Torsion of I-Shaped Sections

y
uf = lateral deflection of one of the 
flanges

θ = twist angle at the selected section

Vf = Shear force in flange due to 
torsion. (internal force developed)

θ is smaller and is in radians, so
θ

uf

fV

2
h

x

2
hθuf ×≅ fV

2
h

ft(1)

fb
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Differential Equation for Torsion of I-Shaped Section (contd…)

The lateral curvature relationship of one flange alone is:

f

ff

EI
M

dz
ud

−=2

2

(2)

Mf = Lateral Bending moment on one flange

If = Moment of inertia of one flange about y-axis of beam

12

3
ff

f

bt
I =



Steel Structures
Differential Equation for Torsion of I-Shaped Section (contd…)

dz
dM

V
dz

dMV f
f =⇒=

Differentiating (1)

(3)

f

ff

EI
V

dz
ud −

=3

3

(4)

3

3

dz
ud

EIV f
ff −=

( )
3

3θ2
dz

dhEIV ff −= 3

3θ
2 dz

dhEIV ff −= (5)
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Differential Equation for Torsion of I-Shaped Section (contd…)

Torsion resistance due to warping

2

2hIC fw =

Warping Constant

212

23 hbt
C ff

w ×=

22

2hI
C y

w ×=

hVM fw ×=

h
dz
dhEIM fw ××−= 3

3θ
2

3

32 θ
2 dz

dhEI f ×−=

3

3θ
dz
dECM ww ×−= (6)

4

2hI
C y

w =
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Differential Equation for Torsion of I-Shaped Section (contd…)

Torsion resistance due to Pure torsion

dz
dGJM s
θ

×=
dz
dGCM s
θ

×=OR

For Circular Section For Non-Circular Section

wsz MMM +=

3

3θθ
dz
dEC

dz
dGCM wz −×=

Total Torque Applied

(8)
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Differential Equation for Torsion of I-Shaped Section (contd…)

Dividing by “-ECw”

w

z

w EC
M

dz
d

EC
GJ

dz
d

−=×−
θθ

3

3

(9)

w

z

EC
M

dz
dθ

dz
d

−=− 2
3

3

λθ
(10)

Non homogeneous differential equation

where

wEC
GC

=2λ
wEC

GC
=λ (11)

λ2 = Ratio of pure torsion rigidity to warping torsion rigidity 
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Differential Equation for Torsion of I-Shaped Section (contd…)

Total Solution

Ph θθθ +=
θ = Total Solution
θh = Homogeneous Solution
θP = Particular Solution 

Homogeneous Equation

02
3

3

=−
dz
dθλ

dz
θd
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Differential Equation for Torsion of I-Shaped Section (contd…)

Trial Function
mz

h Aeθ =
“A”, “m” are constants. “z” is independent variable

mzeAm
dz
θd 3
3

3

=

023 =×− mzmz AmeλeAm

( ) 023 =− mλmAemz

0≠AFor non-trivial solution
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Differential Equation for Torsion of I-Shaped Section (contd…)

0λ23 =− mm
( ) 0λ22 =−mm

Possible Solutions:    m = 0, m = +λ , m = -λ 

Sum of all solutions is total homogeneous solution
oλzλz

h eAeAeAθ 321 ++= −

321 AeAeA λzλz ++= −

We know

( ) ( ) xexx =+ coshsinh ( ) ( ) xexx −=− coshsinhand
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Differential Equation for Torsion of I-Shaped Section (contd…)

( ) ( )[ ] ( ) ( )[ ] 321 sinhcoshcoshsinh AλzλzAλzλzAθh +−++=

( )( ) ( )( ) 32121 coshsinh AAAλzAAλzθh +++−=

( ) ( ) CλzBλzAθh ++= coshsinh (13)

Homogeneous solution



Steel Structures
Differential Equation for Torsion of I-Shaped Section (contd…)

Particular solution
Consider Mz to be constant or linearly varying along the length

Mz = f(z)    [Constant or function of first degree]. θp may assumed to 
be a polynomial of degree up to 2, as twist due to pure torque is first 
integral of moment.
Let

( )zfθP 1=
Uniform torque

(14)

( ) FEzDzzf ++= 2
1

e.g. 

Polynomial of second order. One 
order higher that applied torque. 
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Differential Equation for Torsion of I-Shaped Section (contd…)

Try this particular integral in (10)

( ) ( ) ( )zf
ECdz

zdf
dz

zfd

w

1λ 12
3

1
3

−=− ( )zfM z =
Polynomial of Ist order

( ) ( )zf
ECdz

zdfλ
w

112 = (15)

As

Boundary conditions
1- Torsionally Simply Supported

weld

0≠
dz
dθ

02

2

=
dz
θd

0=θ
Flanges can bend laterally 
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Differential Equation for Torsion of I-Shaped Section (contd…)

This is equivalent to deflection and moment made equal to zero for 
simple support for bending.  Change of twist dθ / dz may have any 
value at the end.
Flange may displace at the end but web is held at its position.

2- Torsionally Fixed End

weld

Both Flanges and Web are 
connected

0=
dz
dθ

02

2

≠
dz
θd0=θ

The constant of integration will be 
evaluated for individual cases. 
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Differential Equation for Torsion of I-Shaped Section (contd…)

After getting the value of constants and full solution for θ, the 
stresses may be evaluated as follows:  

Pure Torsional Shear Stress

C
Tr

s =ν

dz
dθGCT =where

dz
dθGtνs = (16)
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Differential Equation for Torsion of I-Shaped Section (contd…)

Warping Shear Stress

ff

ff
w tI

QV
=ν

( )
ff

ff
ff

w tI

bb
t

dz
dhEI 








×××








×

=
422 3

3

mag. max.

θ

ν

No stress in the web

From (5)

( ) 3

32

mag. max. 16 dz
θdhb

Eν f
w = (16)
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Differential Equation for Torsion of I-Shaped Section (contd…)

Normal Warping Stress

f

f
bw I

xM
f =

( ) 2

2

dz
ud

EIM f
fmagf = ( ) 2

2

dz
θd

2
hEIM fmagf =

(in the flanges)

( ) 2

2

dz
θd

h
CEM w

magf =

( )
f

f
f

bw I

b
dz
θdhEI

f 22 2

2

max

×
= ( ) 2

2

max 4 dz
θdhb

Ef f
bw =

(fbw)max is at 
the tips of 
flange
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DESIGN AND ALLOWABLE 
TORSION STRENGTHS

The design and allowable torsion strengths are below:

Design torsional strength in LRFD =  φt Tn

Allowable torsional strength in ASD =  Tn / Ωt

Resistance factor for torsion in LRFD =  φt =  0.9

Safety factor for torsion in ASD =  Ωt =  1.67
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The nominal torsional strength (Tn) according to 
the limit states of torsional yielding and torsional 
buckling is:

Tn =  Fn C

The following nomenclature may be used in the 
further discussion:

C = torsion constant

= 2(B − t)(H − t) − 4.5(4 − π)t3 for 
rectangular HSS
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C = for round HSS

B = overall width of rectangular HSS

H = overall height of HSS

h = clear distance between the flanges 
less the inside corner radius on each 
side

D = outside diameter of round HSS

L = length of the member

2
)( 2 ttD −π
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Fn For Round HSS

Fn =  Fcr =  larger of                       and 

but the value should not exceed 0.6Fy

4/5

23.1 E
2/3

60.0









t
D

E









t
D

D
L

Fn For Rectangular HSS

i)  For Fn =  Fcr =  0.6Fy
Eh 45.2≤

yFt
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ii)  For 

Fn =  Fcr =  

yy F
E

t
h

F
E 07.345.2 ≤<

t
h

F
EF

y
y 










45.26.0

iii)  For 

Fn =  Fcr =  

26007.3 ≤<
t
h

F
E

y

2

2

)/(
458.0

th
Eπ
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Fn For Other Sections
a) For the limit state of yielding under normal stress:

Fn =  Fy

b) For the limit state of shear yielding under shear 
stress:

Fn =  0.6Fy

c) For the limit state of buckling

Fn =  Fcr

where Fcr for buckling is to be determined by detailed 
analysis.
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Example:
A W460 x 106 simply supported beam of span 7.5 m is subjected to
a concentrated load of 90kN at mid-span at an eccentricity of 50mm 
from the plane of the web. The ends of the member are simply 
supported with respect to torsional restrain. Develop the 
expression for the angle θ and compute combined bending and 
torsional stresses. 

W460 x 106

90kN 90kN e = 50mm
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Solution:

0
dz
θd
0θ

2

2

=

=

3.75 m

T/2T/2

3.75 m

T/2

T/2

Ms  (Pure Torsion)

Mw  (Warping Torsion)

Total Torsional 
Resistance
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Solution: (contd…)

( ) 2
Tzf =

5090×=×= ePT
mmkN −= 4500

( )zfzCCP 121θ =+=
One order ahead

( ) ( ) ( )zf
ECdz

zdf
dz

zfd

w

1λ 12
3

1
3

−=−

wEC
GJλ =2

( )
2

10 2
2 T

EC
Cλ

w

−=−

GC
T

GJ
EC

EC
TC w

w 2
1

22 =×=

So, the particular solution is:

z
GC
TCθP ×+=

21

where
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Solution: (contd…)

The total solution is

( ) ( ) z
GC
TCCλzBA ×++++=

2
coshλzsinhθ 1

( ) ( ) Cz
GC
TλzBA +×++=

2
coshλzsinhθ

Boundary Conditions

0θ   0,z ==

00 2

2

==
dz
θd,   z

(I)
0

2
==

dz
dθ,   Lz (III)

(II)
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Solution: (contd…)

To apply the boundary condition first we have to take Ist and 2nd derivatives

( ) ( )
GC
TλzBλλzAλ

dz
dθ

2
sinhcosh +×+=

( ) ( )λzBλλzAλ
dz
θd coshsinh 22
2

2

×+=

( ) C0B00I +++=⇒ 0CB =+

( ) ( )λzBλλzAλ
dz
θd sinhcosh 33
3

3

×+=

( ) 1Bλ00II 2 ×+=⇒ 0B =
0C =
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Solution: (contd…)

GC
TLλAλ

2
0

2
cosh0 ++






=( )⇒III

















−=

2
cosh

1
2 λLGCλ

TA

( ) ( ) z
GC
TλzSinh

λLGCλ
Tθ

22cosh
1

2
+×







−
=
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Solution: (contd…)

( )
( )








=

2cosh
sinh

2 λL
λzλz-

GCλ
Tθ

( )
( )








=

2cosh
cosh

2 λL
λzλλ-

GCλ
T

dz
dθ

( )
( )








=

2cosh
cosh1

2 λL
λz-

GC
T

dz
dθ

( )
( )







 −
=

2cosh
sinh

22

2

λL
λz

GC
Tλ

dz
θd ( )

( )







−=

2cosh
cosh

2

2

3

3

λL
λz

GC
Tλ

dz
θd
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Solution: (contd…)

W 460 x 106

h =  d – tf = 448.4 mm
tf = 20.6 mm
tw = 12.6 mm
bf = 194 mm
d = 469 mm

Sx = 2080 x 103 mm3

Ix = 48, 700 x 104 mm4

C = J = 145 x 104 mm4

Cw = 12,62,119 x 106 mm6

1/λ = 1501 mm
L = 7500 mm



Steel Structures
Solution: (contd…)
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Steel Structures
Solution: (contd…)

Pure Torsional Shear Stress
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Steel Structures
Solution: (contd…)

Maximum pure torsional shear stress is at the ends
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Steel Structures
Solution: (contd…)

Warping Shear Stress

In flanges

( ) 3
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Steel Structures
Solution: (contd…)

Along the length maximum value will occur at z=L/2

( ) 





 ×−== 2

cosh3070midspanat 2max
Lλ.ν L/zw

MPa.881−=
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Steel Structures
Solution: (contd…)

Normal Warping Stress

( ) 2
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max 4 dz
θdhEb

f f
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( ) ( )λz.fbw sinh569max −=

As flanges are simply supported at ends, the maximum stress will be at 
mid-span
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Steel Structures
Solution: (contd…)

Maximum Normal Stress due to Ordinary Flexure
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Steel Structures
Solution: (contd…)

Shear Stress due to Ordinary Bending

Ib
VQ

=ν

At the N.A.:
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Steel Structures
Solution: (contd…)

At face of Web:

With in flange at edge of web
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Steel Structures
Summary of Stresses

0
1.88
1.88
Sum = 3.76 MPa < 135 MPa,         O.k.

26.72
0.31
1.88
Sum = 28.91 MPa
< 135 MPa                  OK

Shear Stress in Flange
Pure Torsion, νs

Warping Torsion, νw

Vertical Bending, ν

0
8.68
Sum = 8.68 MPa
< 0.9x 0.6x 250 = 135 OK

16.34
8.68
Sum = 25.02 MPa
< 0.9x 0.6x 250 = 135 OK

Shear Stress in Web
Pure Torsion, νs

Vertical Bending, ν

81.13
57.69
Sum = 138.82 MPa < 0.9 x 250 = 225 
MPa   O.K.

0
0

Normal Stress
Vertical Bending, fb

Torsional Bending, fbw

Mid SpanSupportType of Stress

Results:  Beam is safe in flexure, torsion and shear at all the sections



Steel Structures
Analogy Between Warping Torsion and Lateral 
Bending

PH

T ≈ h

PH

PHx h = T

PH = T/h



Steel Structures
Analogy For Torsion (contd…)

• Because the differential equation solution is time consuming, and 
really suited only for analysis, design of a beam to include torsion is most 
conveniently done by making the analogy between torsion and ordinary 
bending 

• It is assumed that all the torque is resisted by warping torsion which    
is not the actual situation (solution will be approximate).

• β factor is used to reach near to actual solution.  

• β factors are problem specific values, depending on end conditions.

• Tables have been proposed for β factor to cover different situations.

• β factor tables are available on Page # 476 & 477, (Salmon & Johnson)

β1 β2



Steel Structures
Analogy For Torsion (contd…)

C
tTvs

×
=
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f
bw S
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2/
==

ff

ff
w tI

QV
v =

PH

PH/2 PH/2

Vf=PH/2

2
LVβM ff ××=

Correction factor

PHL/4 =VfL/2



Steel Structures
Example:
Select a W section for a beam to carry 9kN/m dead load including the self 
weight, and a live load of 24 kN/m. The load is applied at an eccentricity 
of 175mm from center of web. The simply supported span is 8.0 m.
Assume that ends of beam are simply supported for torsion.  

Solution:
L.D.wu 6121 +=

246.191.2 ×+×=

mkN /   2.49=



Steel Structures
Solution: (contd…)

mkNwu /  2.49= 175 mm

8.0 m

mu

Torque diagram

2
Lmu

2
Lmu



Steel Structures
Solution: (contd…)

mkNM ux −=
×

=   60.393
8

0.82.49 2

mmkNmu /  61.8
1000
1752.49 −=×=

mmLd 364
22

8000
22min ===

mmh 364≅Let

0.3Lλ =Assume Initial assumption



Steel Structures
Solution: (contd…)

8

2LwβM H
f =

8

2L
h

mβM u
f ×= h

mw u
H =

z = 0.5L,  a = 0.5

From table 8.6.8, P # 477

5103 .βλL =⇒=

mkN  51.96
8
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3640
61.8510

2

−=××=
.

.
.M f



Steel Structures
Solution: (contd…)

( ) ( )
yb

yxf

yb

ux
reqx F
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( ) ( )
25090
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×
××

+
×

×
=

.
.

.
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Approximate value

( ) 33104109 mmS reqx ×=



Steel Structures
Solution: (contd…)

Where high torsional strength is required, W360 sections are preferable 
because these usually give less stresses due to torsional warping.

Trial Section

W 360 x 237
bf = 395 mm bf/2tf = 6.5 Iy = 31100 x 104 mm4

tf = 30.2 mm h/tw = 13.7 tw = 18.9 mm 

Sy = 1580 x 103 mm3 d = 380 mm C = J = 824 x 104 mm4

Sx = 4160 x 103 mm3 Ix = 79100 x 104 mm4          1/λ = 1735 mm

Check conditions of 
compact section



Steel Structures
Solution: (contd…)

Assuming that Lb ≤ Lp, no problem of LTB

61.48000
1735

1λL =×=

0.275

0.374

β λL 

309.0)61.40.5(
1

27.037.00.27β =−×
−

+=

mmtdh f 8.3492.30380 =−=−=

8

2L
h

mβM u
f ×=

mkN.. −=×××= 85.60
3498.0
1

8
0861.83090

2



Steel Structures
Solution: (contd…)

Normal Bending Stress At Mid-span

y

f

x

ux
un S

M
S

Mf
2

+=

3

6

3

6

101580
1085.602

104160
1060.393

×
××

+
×
×

=

MPa64.171=

MPaFyb 225=< φ O.K.



Steel Structures
Solution: (contd…)

Shear Stress
• Warping torsion…………Critical at center

• Vertical bending…………Critical at ends

• Pure torsion……………...Critical at ends.

Warping Shear Stress At Mid-Span:

ff

ff
w tI

QV
=ν

N  7606
3498.0

100061.83090 =
×

×== .
h

mβV u
f



Steel Structures
Solution: (contd…)

3310589
42

mm
b

t
b

Q f
f

f
f ×=××=

441015550
2

mm
I

I y
f ×==

MPaνw 524.1
9.181015550

105897606
4

3

=
××
××

= MPa135<
O.K.

Total shear stress  =  1.524 MPa, because there is no applied 
shear at the center and there is no simple torsion   O.K.



Steel Structures
Solution: (contd…)

Web Shear Stress (end section):

( )
wx tI

QLwν
×

×
=

2
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At N.A.

MPa65.30=



Steel Structures
Solution: (contd…)

Pure Torsion (end section):

C
tTν w

s
×

=

mmkN  44.34
2

−==
LmT u

MPaνs 00.79
10824

9.181044.34
4

6

=
×

××
=

Including small 
warping 
contribution in the 
same formula

Total Shear stress at end section MPa65.10900.7965.30 =+=
MPa135< O.K.



Steel Structures
Flange Shear Stress (end section):

( )
wx tI

QLwν
×

×
=

2

At Junction of Web and Flange

33101043
42

mm
b

t
b

Q f
f

f ×=××=

2.301079100
10104310008.196

4

3

××
×××

=ν

MPa59.8=



Steel Structures
Pure Torsion (end section):

C
tTν w

s
×

=

mmkN  44.34
2

−==
LmT u

MPaνs 62.113
10824

2.301044.34
4

6

=
×

××
=

Including small 
warping 
contribution in the 
same formula

Total shear stress at end section  =  v + vs + vs

MPa21.122062.11359.8 =++=
O.K.MPa135<



Steel Structures
Table. Values of λ and C

Designation 1/λ C =  J (× 104 mm4)

W360 × 216 1869 633
× 237 1735 824
× 262 1600 1100
× 287 1483 1450
× 314 1389 1860
× 347 1288 2480
× 382 1196 3290
× 421 1118 4330
× 463 1046 5660
× 509 980 7410
× 551 932 9240
× 592 892 11400
× 634 853 13800



Steel Structures

Concluded
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