Steel Structures
 M.Sc. Structural Engineering

SE-505

Lecture \# 5
Composite Steel-Concrete Construction

Steel Structures

Strength Design (contd...)
Positive Moment Strength Based on Plastic Stress Distribution
Case-II Plastic N.A. Outside the Slab
Rare case. When b_{E} is very small

Steel Structures

Strength Design (contd...)
Positive Moment Strength Based on Plastic Stress Distribution
Case-II Plastic N.A. Outside the Slab

$$
\begin{gathered}
C_{c}=0.85 f_{c}^{\prime} \times b_{E} \times t_{s} \\
C_{s}=A_{s}^{\prime} F_{y}
\end{gathered}
$$

$\mathrm{A}_{\mathrm{s}}{ }^{\prime}=$ Area of steel section in compression

$$
T^{\prime}=\left(A_{s}-A_{s}^{\prime}\right) F_{y}
$$

$A=$ Total area of steel section

Steel Structures

Strength Design (contd...)
Case-II Plastic N.A. Outside the Slab

$$
\begin{gathered}
T^{\prime}=A_{s} F_{y}-A_{s}^{\prime} F_{y} \\
T^{\prime}=A_{s} F_{y}-C_{s} \\
C_{s}=A_{s} F_{y}-T^{\prime}
\end{gathered}
$$

For longitudinal equilibrium

$$
\begin{gathered}
T^{\prime}=C_{c}+C_{s} \\
A_{s} F_{y}-C_{s}=C_{c}+C_{s} \\
C_{s}=\frac{A_{s} F_{y}-C_{c}}{2}
\end{gathered}
$$

Steel Structures

Strength Design (contd...)
Case-II Plastic N.A. Outside the Slab
Steps for Capacity Calculation

1. Find position of N.A.
2. Calculate tension and compression area.
3. Locate centroid of tension area.
4. $d_{2}^{\prime}=d+t_{\mathrm{s}} / 2-y_{\mathrm{b}}$
5. $d_{2}{ }^{\prime \prime}=d-d_{\mathrm{f}} / 2-y_{\mathrm{b}}$
[If P.N.A is within the top flange]

Steel Structures

Strength Design (contd...)

Case-II Plastic N.A. Outside the Slab
Steps for Capacity Calculation

$$
\begin{aligned}
& M_{n}=C_{c} \times d_{2}^{\prime}+C_{s} \times d_{2}^{\prime \prime} \\
& \phi_{b}=0.9 \quad \Omega_{b}=1.67
\end{aligned}
$$

When P.N.A. is within steel section (flange or web) some portion of section is in compression. But there is no concern of flange local buckling or LTB as it is continuously braced. Web local buckling can be checked.

Steel Structures

Strength Design (conta...)

Example: determine the flexural capacity of the shown composite section. Use A36 steel and concrete of $f_{\mathrm{c}}^{\prime}=20 \mathrm{MPa}$.

W 920×253
$A=32,300 \mathrm{~mm}^{2}, d=919 \mathrm{~mm}$
$b_{\mathrm{f}}=306 \mathrm{~mm}, t_{\mathrm{f}}=27.9 \mathrm{~mm}$
$t_{\mathrm{w}}=17.3 \mathrm{~mm}, h / t_{\mathrm{w}}=47.8 \mathrm{~mm}$,
$b_{f} / 2 t_{\mathrm{f}}=5.5$

Steel Structures

Strength Design (conta...)
Solution
Assuming the N.A. within the slab

$$
\begin{aligned}
a & =\frac{A_{s} F_{y}}{0.85 f_{c}^{\prime} b_{E}} \\
a & =\frac{32,300 \times 250}{0.85 \times 20 \times 1800}=264 \\
c & =\frac{a}{\beta_{1}}=\frac{264}{0.85}
\end{aligned}
$$

$$
c=310 \mathrm{~mm}>t_{s} \quad \text { N.A. is outside the slab. }
$$

Steel Structures

Strength Design (contd...)

Solution
The above value of " c " is now invalid.

$$
\begin{aligned}
C_{c} & =0.85 f_{c}^{\prime} b_{E} t_{s} \\
& =\frac{0.85 \times 20 \times 1800 \times 175}{1000} \\
& =5355 \mathrm{kN} \\
C_{s} & =\frac{\left(A_{s} F_{y}-C_{c}\right)}{2} \\
= & \frac{(32,300 \times 250 / 1000-5355)}{2} \\
= & 1360 \mathrm{kN}
\end{aligned}
$$

Steel Structures

Strength Design (conta...)

Check location of N.A, by first making some assumption.

1. N.A. is within the flange of N.A.
$b_{f} \times d_{f} \times F_{y}=C_{s}$

$$
\begin{aligned}
d_{f} & =\frac{C_{s}}{b_{f} \times F_{y}}=\frac{1360 \times 1000}{306 \times 250} \\
& =17.8 \mathrm{~mm}<t_{f}
\end{aligned}
$$

So N.A. is within the flange of W-Section
If N.A. is outside flange,
$t_{\mathrm{w}} \times$ depth outside flange $=C_{\mathrm{s}}-b_{\mathrm{f}} \times t_{\mathrm{f}} \times 250 / 1000$

Steel Structures

Strength Design (conta...)

Now we need to calculate $\mathrm{d}_{2}{ }^{\prime}$
$d_{2}{ }^{\prime}=d+\frac{t_{s}}{2}-y_{b}$

y_{b} is the location of centroid of the area below N.A.

Area in tension:

$$
\begin{aligned}
A_{T} & =32,200-306 \times 17.8 \\
& =26853 \mathrm{~mm}^{2} \\
y_{b} & =\frac{A \times d / 2-b_{f} \times d_{f} \times\left(d-d_{f} / 2\right)}{A_{T}} \\
& =368 \mathrm{~mm}
\end{aligned}
$$

Steel Structures

Strength Design (contd...)
Now we need to calculate $\mathrm{d}_{2}{ }^{\prime}$

$$
\begin{aligned}
& d_{2}^{\prime}=d+\frac{t_{s}}{2}-y_{b} \\
& d_{2}^{\prime}=919+\frac{175}{2}-368=638.5 \mathrm{~mm} \\
& d_{2}^{\prime \prime}=d-\frac{d_{f}}{2}-y_{b} \\
& d_{2}^{\prime \prime}=542.1 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& \phi_{b} M_{n}=\phi_{b}\left(C_{c} \times d_{2}^{\prime}+C_{s} \times d_{2}^{\prime \prime}\right) \\
& \phi_{b} M_{n}=0.90(5355 \times 638.5+1360 \times 542.1) / 1000=3740 \mathrm{kN}-\mathrm{m}
\end{aligned}
$$

Steel Structures

Shear Connectors

"Mechanical shear connectors are required for the full transfer of longitudinal shear except for concrete encased beam".

1. Shear Studs

Shear Connector

Head to avoid

$\mathrm{H}_{\mathrm{s}} / \mathrm{d}_{\mathrm{s}} \geq 4$
[AISC I1.3]

Steel Structures

Shear Connectors (contd...)

2. Channel Connectors

$L_{\mathrm{c}}=$ Length of channel section
AISC suggests only studs and channels

Steel Structures

Shear Connectors (contd...)
3. Spiral Connectors

Not suggested by AISC

Steel Structures

Shear Connectors (contd...)

4. Angle Connectors

Not suggested by AISC

Steel Structures

Shear Connectors (contd...)
Horizontal Shear Force for which Connectors are to be Designed For Positive Moment Sections
AISC I3 Shear force shall be smallest of the following limit states

1. Concrete crushing

$$
V^{\prime}=0.85 f_{c}^{\prime} A_{c}
$$

2. Tensile Yielding of the steel section

$$
V^{\prime}=A_{s} F_{y}
$$

3. Strength of shear connectors

$$
V^{\prime}=\Sigma Q_{n}
$$

$A_{c}=$ Area of concrete slab within effective width
$A_{\mathrm{s}}=$ Area of concrete steel cross section
$Q_{\mathrm{n}}=$ nominal strength of one connector
$\Sigma Q_{n}=$ strength of total number of connectors between the point of max. positive moment and the point of zero moment.

Steel Structures

Shear Connectors (contd...)
Horizontal Shear Force for which Connectors are to be
Designed For Negative Moment Section
AISC I3 Shear force shall be lesser of the following limit states:

1. $V^{\prime}=A_{r} F_{y r} \quad$ Tensile yielding of the slab reinforcement.
2. $V^{\prime}=\Sigma Q_{n} \quad$ Strength of shear connectors
$\mathrm{A}_{\mathrm{r}}=$ Area of reinforcement in slab parallel to beam with in effective width of slab
$\mathrm{F}_{\mathrm{yr}}=$ minimum specified yield strength of steel reinforcement.

Steel Structures

Shear Connectors (contd...)
AICS I3 Strength of Stud Connector

$$
Q_{n}=0.5 A_{s c} \sqrt{f_{c}^{\prime} E_{c}} \leq R_{g} R_{p} A_{s c} F_{u} \quad H_{s} / d_{s} \geq 4
$$

$A_{\mathrm{sc}}=$ Area of shear connector
$E_{\mathrm{c}}=$ M.O.E of concrete in MPa
$F_{\mathrm{u}}=$ specified minimum tensile strength of a stud shear connector

Usually, dia of stud = 12 to $25 \mathrm{~mm}, \mathrm{H}_{\mathrm{s}}=50$ to 200 mm R_{g} and R_{p} are equal to 1.0 in case no decking is used. For different types of decking, the values are given in AISC specification.

Steel Structures

Shear Connectors (contd...)
AISC I3 Strength of Channel Connector

$$
Q_{n}=0.3\left(t_{f}+0.5 t_{w}\right) L_{c} \sqrt{f_{c}^{\prime} E_{c}}
$$

$L_{\mathrm{c}}=$ Length of channel connector
t_{f} and t_{w} are for the channel

Steel Structures

Shear Connectors (contd...)
AICS I3.2d.(5) Required Number of Shear Connector (between max. and zero moment section)

Number of Shear

Steel Structures

Shear Connectors (contd...) AICS I3.2d.(6) Shear Connector Placement and Spacing Shear connectors required on each side of maximum BM (+ve or -ve) shall be distributed uniformly between that point and the adjacent point of zero moment.

- Minimum cover for the shear connector is 25 mm .
- Diameter of stud should not be greater than $2.5 \mathrm{t}_{\mathrm{f}}$
- $s_{\text {min }}=6 d_{\mathrm{s}}$ (longitudinal direction)
- $\mathrm{s}_{\max }=$ lesser of $8 t_{\mathrm{s}}$ and 915 mm (all directions)
- $\mathrm{s}_{\text {min }}=4 d_{\mathrm{s}}$ (transverse direction)

Steel Structures

Spans and Proportions of Composite Sections

For steel building frames economical span $=7.5 \mathrm{~m}$ to 15 m Bridges

- For Simple span, $>12 \mathrm{~m}$ is economical
- For Continuous span, > 18 m is economical

Steel plate may be attached with bottom flange of steel beam to increase tensile capacity.

Approximate Minimum Depth of Steel Beam (Not AISC requirement)

- Steel beams without cover plate, L/24 for static load
- Steel beams without cover plate, L/20 for moving load

Steel Structures

Estimate of Self Weight
Self weight $=\left[\frac{M_{u}(\mathrm{~N}-\mathrm{mm})}{\left(d / 2+Y_{\text {conc. }}-a / 2\right) \phi F_{y}}\right] \times 0.00785 \mathrm{~kg} / \mathrm{m}$
$Y_{\text {conc. }}=$ Distance from top of steel section to top of concrete slab
$\mathrm{a}=$ depth of stress block, 50 mm for initial guess

Steel Structures

Example:

Determine the number of 20 mm dia $\times 80 \mathrm{~mm}$ shear stud connectors made of A36 steel to develop fully composite section shown in figure. Assume that the applied loading is uniform and beam is simply supported. $\mathrm{fc}^{\prime}=20 \mathrm{MPa}$.

$$
\begin{aligned}
& \text { W } 920 \times 253 \\
& A=32,300 \mathrm{~mm}^{2} \\
& H_{\mathrm{s}}=80 \mathrm{~mm}, d_{\mathrm{s}}=20 \mathrm{~mm}
\end{aligned}
$$

Steel Structures

Solution (contd...)

$$
H_{\mathrm{s}} / d_{\mathrm{s}}=4 \quad \text { О.K. }
$$

Strength of One Stud

$$
\begin{aligned}
& \quad Q_{n}=0.5 A_{s c} \sqrt{f_{c}^{\prime} E_{c}} \leq R_{g} R_{p} A_{s c} F_{u} \\
& A_{s c}=\frac{\pi}{4} 20^{2}=314 \mathrm{~mm}^{2} \\
& E_{c}=4700 \sqrt{f_{c}^{\prime}}=4700 \sqrt{20}=21019 \mathrm{MPa} \\
& R_{g} R_{p} A_{s c} F_{u}=1 \times 1 \times 314 \times 400 / 1000=125.6 \mathrm{kN} \\
& Q_{n}=0.5 \times 314 \sqrt{20 \times 21019} / 1000=101.79 \mathrm{kN}<125.6 \mathrm{kN}
\end{aligned}
$$

Steel Structures

Solution (contd...)

Horizontal Shear Force (between +ve max. and zero BM)
V^{\prime} is lesser of

$$
\begin{aligned}
& 0.85 f_{c}^{\prime} A_{c}=0.85 \times 20 \times(1800 \times 175) / 1000=5355 \mathrm{kN} \\
& A_{s} F_{y}=32,300 \times 250 / 1000=8075 \mathrm{kN}
\end{aligned}
$$

$\Sigma Q_{n} \quad$ Not used here because we are designing studs and don't know the number of studs, in fact, we are going to calculate them.

$$
V^{\prime}=5355 \mathrm{kN}
$$

Steel Structures

Solution (contd...)

Number of Shear Connectors (between +ve max. and zero BM)

$$
=\frac{V^{\prime}}{Q_{n}}=\frac{5355}{101.79} \cong 53
$$

2 studs at each cross section and at 27 locations in half span ($L / 2$).

Steel Structures

Example:

Design an interior composite beam for the floor plan shown in fig. assuming that no shoring will be used during construction. Use A36 steel, $\mathrm{fc}^{\prime}=20 \mathrm{MPa}, 100 \mathrm{~mm}$ slab thickness, flooring, false ceiling and partition load $=155 \mathrm{~kg} / \mathrm{m}^{2}$, live load $=750 \mathrm{~kg} / \mathrm{m}^{2}$ and construction live load $=100 \mathrm{~kg} / \mathrm{m}^{2}$. The beam is having shear connection with the main beam. Try minimum depth section.

Steel Structures

Solution

$d \cong \frac{L}{24}=\frac{8500}{24}=354 \mathrm{~mm}$
Use W 360

Slab Weight $=\left(\frac{100}{1000} \times 2400\right) \times 2.5=600 \mathrm{~kg} / \mathrm{m}$
Other dead loads $=155 \times 2.5=388 \mathrm{~kg} / \mathrm{m}$

Assumed Self weight $=10 \%$ of other dead loads

$$
=0.1(600+388)=99 \mathrm{~kg} / \mathrm{m}
$$

Steel Structures

Solution (contd...)

Total Dead Load $=600+388+99=1087 \mathrm{~kg} / \mathrm{m}$
Live Load

$$
\begin{aligned}
& =750 \mathrm{~kg} / \mathrm{m}^{2} \\
& =750 \times 2.5=1875 \mathrm{~kg} / \mathrm{m}
\end{aligned}
$$

Total Factored Load $=(1.2 \times 1087+1.6 \times 1875) \times \frac{9.81}{1000}$

$$
\begin{gathered}
w_{\mathrm{u}}=42.23 \mathrm{kN} / \mathrm{m} \\
M_{u}=\frac{42.23 \times 8.5^{2}}{8}=381.41 \mathrm{kN}-\mathrm{m}
\end{gathered}
$$

Steel Structures

Solution (contd...)

Approximate Self weight $=\left[\frac{\left.M_{u(N-m m}\right)}{\left(d / 2+Y_{\text {conc. }}-a / 2\right) \phi F_{y}}\right] \times 0.00785 \mathrm{~kg} / \mathrm{m}$

$$
\begin{aligned}
& =\left[\frac{381.41 \times 10^{6}}{(360 / 2+100-50 / 2) 0.90 \times 250}\right] \times 0.00785 \\
& =52.18 \mathrm{~kg} / \mathrm{m}<99 \mathrm{~kg} / \mathrm{m}
\end{aligned}
$$

We are on safer side, can be revised also.
Assuming N.A. to lie within the slab

$$
\begin{aligned}
\left(A_{s}\right)_{\text {req }} & =\left[\frac{M_{u}}{\phi_{b} F_{y}\left(d / 2+t_{s .}-a / 2\right)}\right] \\
& =\left[\frac{381.41 \times 10^{6}}{0.90 \times 250 \times(360 / 2+100-50 / 2)}\right]=6648 \mathrm{~mm}^{2}
\end{aligned}
$$

Steel Structures

Solution (contd...)

Trial Section

$$
\begin{array}{ll}
\text { W } 360 \times 57.8, & A=7230 \mathrm{~mm}^{2} \\
d=358 \mathrm{~mm}, & I=16000 \times 10^{4} \mathrm{~mm}^{4}, b_{\mathrm{f}}=172 \mathrm{~mm}
\end{array}
$$

Effective Slab Width
b_{E} is smaller of

1. $L / 4=8500 / 4=2125 \mathrm{~mm}$
2. $s=2500 \mathrm{~mm}$

$$
b_{\mathrm{E}}=2125 \mathrm{~mm}
$$

Steel Structures

Solution (contd...)

Checking the Position of N.A

$$
\begin{align*}
& \begin{array}{l}
a=\frac{A_{s} F_{y}}{0.85 f_{c}^{\prime} b_{E}}=\frac{7230 \times 250}{0.85 \times 20 \times 2125}=50 \mathrm{~mm} \quad \begin{array}{l}
\text { Coincidently same as } \\
\text { assumed value }
\end{array} \\
\begin{aligned}
c=\frac{a}{\beta_{1}}=\frac{50}{0.85}=58.9 \mathrm{~mm}<t_{s} \quad \text { O.K. } \quad \text { N.A. is within slab }
\end{aligned} \\
\begin{aligned}
\phi_{b} M_{n} & =\phi_{b} A_{s} F_{y}\left(\frac{d}{2}+t_{s}-\frac{a}{2}\right) \\
& =0.90 \times 7230 \times 250\left(\frac{358}{2}+100-\frac{50}{2}\right) / 10^{6} \\
& =413.2 \mathrm{kN}-m>M_{u}=381.41 \mathrm{kN}-m \quad \text { О.K. }
\end{aligned}
\end{array} .
\end{align*}
$$

Steel Structures

Solution (contd...)

Local Stability Check

$$
\frac{h}{t_{w}}=39.6<\lambda_{p}=\underset{\text { For A36 Steel }}{107} \text { О.K. }
$$

$$
\frac{h}{t}=39.6<\lambda_{p}=69.5 \quad \text { O.K. } \quad \text { (To get maximum Shear Strength) }
$$

(For flexure stress in web)

$$
\frac{b_{f}}{2 t_{f}}=6.6<\lambda_{p}=10.8 \quad \text { О.К. }
$$

Not compulsory to be checked

Steel Structures

Solution (contd...)

Shear Strength Check

$$
\begin{aligned}
V_{u} & =\frac{42.23 \times 8.5}{2}=179.5 \mathrm{kN} \\
\phi_{v} V_{n} & =\phi_{v}\left(0.6 F_{y}\right) \times d \times t_{w} \\
& =0.9(0.6 \times 250) \times 358 \times 7.9 / 1000 \\
& =381.8 \mathrm{kN}>179.5 \mathrm{kN}
\end{aligned}
$$

Steel Structures

Solution (contd...)

Flexural Strength Check at Construction Stage
Actual Self Weight $=57.8 \mathrm{~kg} / \mathrm{m}$
Wet slab weight $=600 \mathrm{~kg} / \mathrm{m}$ (included in Live Load)
Construction live load $=100 \times 2.5=250 \mathrm{~kg} / \mathrm{m}$

$$
\begin{aligned}
w_{u} & =(1.2 \times 57.8+1.6 \times 850) \times \frac{9.81}{1000} \\
& =14.02 \mathrm{kN} / \mathrm{m} \\
M_{u} & =\frac{14.02 \times 8.5^{2}}{8}=126.7 \mathrm{kN}-\mathrm{m} \\
\phi_{b} M_{p} & =0.9 Z_{x} \times F_{y}=225 \mathrm{KN}-\mathrm{m}>M_{u} \quad \text { O.K. }
\end{aligned}
$$

Steel Structures

Solution (contd...)

Design of Shear Connectors
V^{\prime} is lesser of

$$
\begin{aligned}
& 0.85 f_{c}^{\prime} A_{c}=3612.5 \mathrm{kN} \\
& A_{s} F_{y}=1807.5 \mathrm{kN} \\
& \quad V_{u h}=1807.5 \mathrm{kN}
\end{aligned}
$$

If we use $20 \mathrm{~mm} \Phi \times 80 \mathrm{~mm}$, cover at the top will be 20 mm , which is less than 25 mm so, let we use

$15 \mathrm{~mm} \Phi \times 60 \mathrm{~mm}$

Steel Structures

Solution (contd...)

$$
\begin{aligned}
A_{s c} & =\frac{\pi}{4} \times 15^{2}=176.7 \mathrm{~mm}^{2} \\
E & =21019 \mathrm{MPa} \\
Q_{n} & =0.5 A_{s c} \sqrt{f_{c}{ }^{\prime} E_{c}} \leq A_{s c} F_{u} \quad \mathrm{R}_{\mathrm{g}}=\mathrm{R}_{\mathrm{p}}=1.0 \\
Q_{n} & =\frac{0.5 \times 176.7 \sqrt{20 \times 21019}}{1000} \leq \frac{176.7 \times 400}{1000} \\
& =57.28 \mathrm{kN} \leq 70.6 \mathrm{kN}
\end{aligned}
$$

$$
Q_{n}=57.28 \mathrm{kN}
$$

Steel Structures

Solution (contd...)
Number of Shear Connectors
$\mathrm{b} / \mathrm{w} \mathrm{M}_{\max } \&$ zero moment section.

$$
=\frac{V^{\prime}}{Q_{n}}=\frac{1807.5}{57.28}=32
$$

Transverse Spacing
$b_{\mathrm{f}}=172 \mathrm{~mm}$
$s_{\text {min }}=4 d_{\mathrm{s}}=4 \times 15=60 \quad$ So two rows are easily possible
Longitudinal Spacing

$$
\mathrm{s}=\frac{8500 / 2}{32 / 2}=265 \mathrm{~mm} \left\lvert\, \begin{array}{r|}
\mathrm{s}_{\min }=6 \mathrm{~d}_{\mathrm{s}}=90 \mathrm{~mm}<265 \quad \text { O.K. } \\
s_{\max }=\text { lesser of } 8 t_{s} \text { and } 915 \mathrm{~mm} \\
=800 \mathrm{~mm}>265
\end{array}\right.
$$

$$
\text { Total no. of connectors }=2 \times 32+2=66
$$

2 additional

Concluded

