REVIEW QUESTIONS

- **6.1** Define workability of concrete; enlist the different methods for measuring it in the laboratory? Explain any one of them.
- **6.2** Describe the factors affecting the workability of fresh concrete. How does workability of fresh concrete differ from its rheology?
- **6.3** Explain the compacting factor test. Compare it with slump test
- 6.4 Describe segregation, bleeding and laitance of concrete. Explain the factors affecting them.
- **6.5** Explain different types of slump with sketch only.

MULTIPLE-CHOICE QUESTIONS

- 6.1 Fresh concrete should
 - (a) be able to produce homogeneous concrete (mixable)
 - (b) not segregate or bleed during transportation and placing (i.e., stable)
 - (c) be cohesive and sufficiently mobile (i.e., flowable)
 - (d) be amenable to thorough compaction and satisfactory surface finishing (i.e., compactable and finishable)
 - (e) All of the above
- 6.2 Mixability of a concrete mix governs
 - (a) power requirement in the mixing
 - (b) reproducibility of concrete batches
 - (c) time of mixing
 - (d) homogeneity of fresh concrete
 - (e) All of the above
- **6.3** Workability of fresh concrete is most appropriately defined by
 - (a) the composite property satisfying the requirements of mixability, stability, transportability, placeability, mobility, compactability and finishability
 - (b) ease and homogeneity with which it can be mixed, placed, compacted and finished
 - (c) its consistency and plasticity
 - (d) its slump and compaction factor values
 - (e) All of the above
- **6.4** The empirical test used for assessing the workability of fresh concrete is
 - (a) the slump test
 - (b) the compacting factor test

- (c) the Vee-Bee consistency test
- (d) the flow test
- (e) All of the above
- **6.5** The conventional empirical tests for assessing workability of concrete suffer from the drawback that
 - (a) they measure only a particular aspect of workability, i.e., these tests are single-point tests
 - (b) they are operator sensitive
 - (c) none of these tests is capable of dealing with the whole range of workabilities
 - (d) they are not amenable to physical idealized modeling
 - (e) All of the above
- **6.6** Identify the incorrect statement (s) with regard to the workability of fresh concrete.
 - (a) The change in workability due to a relative change in the water content in concrete is dependent on the mix ratio.
 - (b) An increase in water content may result in a monotonous increase in workability.
 - (c) High water content may result in segregation and bleeding.
 - (d) Water content is limited to a value given by the water-cement ratio.
 - (e) All of the above
- **6.7** Which of the following statement(s) is / are incorrect?
 - (a) The use of a larger size and/or rounded aggregate gives higher workability.

- (b) For the same water content, use of finer sand increases the workability.
- (c) The grading of fine aggregate is more critical than the grading of coarse aggregate for workability.
- (d) For high-strength concrete, a coarser grading is preferred.
- (e) fineness of cement has an influence on bleeding.
- **6.8** Identify the incorrect statement(s).
 - (a) The segregation of coarse particles in a lean dry mix may be corrected by adding a small quantity of water to it.
 - (b) The tendency to segregate can be minimized by reducing the height of drop of concrete.
 - (c) The separation of cement paste from the concrete mix is termed segregation.
 - (d) The aim is to have minimum possible workability consistent with satisfactory placement and compaction of concrete.
 - (e) All of the above
- **6.9** Slump test is the most widely used field test primarily because
 - (a) it indicates the behavior of fresh concrete under action of gravitational forces
 - (b) of the simplicity of apparatus and test procedure
 - (c) it measures consistency or wetness of the mix
 - (d) itensures uniformity among different batches of similar concrete
 - (e) All of the above
- **6.10** The workability of concrete by slump test is expressed as
 - (a) mm^3/h
 - (b) mm^2/h
 - (c) mm/h
 - (d) mm
 - (e) hours
- **6.11** A concrete having a slump of 70 mm is termed as
 - (a) dry
 - (b) semi-plastic
 - (c) plastic
 - (d) flowing
 - (e) None of these

- **6.12** In case the concrete is to be transported by pumping, the slump should be
 - (a) more than 100 mm
 - (b) between 75 to 100 mm
 - (c) between 25 and 50 mm
 - (d) more than 25 mm
 - (e) more than 10 mm
- **6.13** If the slump of concrete mix is 75 mm, its workability is considered to be
 - (a) very high
 - (b) high
 - (c) medium
 - (d) low
 - (e) very low
- **6.14** The slump test of concrete is used to measure its
 - (a) compaction under gravitational force
 - (b) mobility
 - (c) consistency
 - (d) homogeneity
 - (e) All of the above
- **6.15** For an RCC slab the slump of concrete should be
 - (a) 0-25 mm
 - (b) 25-50 mm
 - (c) 25-100 mm
 - (d) 50-125 mm
 - (e) 100-150 mm
- **6.16** The slump of concrete to be transported by belt conveyors should be
 - (a) 25–50 mm
 - (b) 50-75 mm
 - (c) 75–100 mm
 - (d) 100-125 mm
 - (e) 0-125 mm
- **6.17** Finishing of concrete surface will be difficult when the slump exceeds
 - (a) 25 mm
 - (b) 40 mm
 - (c) 50 mm
 - (d) 75 mm
- (e) 100 mm 6.18 Compacting factor test is superior to
- slump test mainly because it
 - (a) gives behavior of fresh concrete under the action of external forces
 - (b) measures compactibility of concrete
 - (c) is more accurate than slump test for concrete mixes of medium and low workabilities

- (d) is more sensitive and gives more consistent results
- (e) None of the above
- **6.19** The compacting factor test for fresh concrete
 - (a) is adopted when nominal size of aggregate does not exceed 20 mm
 - (b) measures the relative effort required to change a mass of concrete from one definite shape to another
 - (c) measures the compaction obtained by a standard amount of work applied to a standard quantity of concrete
 - (d) gives an indication of the mobility of fresh concrete
 - (e) All of the above
- **6.20** A compacting factor of 0.88 for a fresh concrete sample indicates a mix of
 - (a) high workability
 - (b) medium workability
 - (c) low workability
 - (d) very low workability
 - (e) None of the above
- **6.21** Concrete is considered unsuitable for compaction by vibration if
 - (a) the compacting factor is more than 0.9
 - (b) it is of low workability
 - (c) it is very stiff
 - (d) slump is between 25-50 mm
 - (e) None of the above
- **6.22** Identify the correct statement(s).

Degree of work ability	Com- pacting factor	Slump
(a) high	0.68	125– 150 mm
(b) medium	0.78	25–75 mm
(c) low	0.84	10–50 mm
(d) very low	0.90	_
(e) None of the above		

6.23 A concrete is said to be workable if

- (a) it is of uniform color
- (b) it is almost a fluid
- (c) it can be easily mixed, placed and compacted
- (d) it has a tendency to segregate and bleed
- (e) None of the above
- 6.24 The Vee-Bee test
 - (a) is suitable for concrete mixes of low and very low workabilities
 - (b) is a remolding test
 - (c) is unsuitable for concretes having a slump of 75 mm or above
 - (d) is suitable since the concrete in the test receives a similar treatment as it would in actual practice
 - (e) Any of the above
- **6.25** Bleeding of concrete is said to occur when
 - (a) finer particles settle down at the bottom
 - (b) coarser particles get separated
 - (c) cement paste rises to the surface of concrete
 - (d) finer particles collect in isolated pockets
 - (e) None of the above
- **6.26** Identify the incorrect statement(s) with regard to the bleeding of concrete.
 - (a) Bleeding increases the permeability of concrete
 - (b) Bleeding causes laitance at the surface
 - (c) Bleeding can be corrected by the addition of a small amount of water
 - (d) Bleeding reduces the durability of concrete
 - (e) None of the above
- **6.27** Workability of concrete is independent of
 - (a) mix proportions
 - (b) water content
 - (c) size, shape and texture of aggregate
 - (d) environment conditions
 - (e) None of the above
- **6.28** The separation of coarse aggregate from mortar during transportation of

concrete is termed

- (a) bleeding
- (b) creeping
- (c) segregation
- (d) flow of concrete
- (e) cohesion
- 6.29 Segregation in concrete results in
 - (a) porous layers
 - (b) honeycombing
 - (c) sand streaks
 - (d) surface scaling
 - (e) All of the above
- **6.30** The workability of concretes can be improved by the addition of any of the

following except

- (a) fly ash
- (b) copper sulfate
- (c) calcium chloride
- (d) plasticizers
- (e) superplasticizers
- **6.31** A retarder plasticizer reduces workability loss
 - (a) due to slowing down the process of setting
 - (b) due to air-entrainment
 - (c) hydrophobic action
 - (d) through the process of flocculation
 - (e) All of the above

Answers t	o MCQs				
6.1 (e)	6.2 (e)	6.3 (a)	6.4 (e)	6.5 (e)	6.6 (a)
6.7 (b)	6.8 (c)	6.9 (b)	6.10 (d)	6.11 (c)	6.12 (b)
6.13 (c)	6.14 (c)	6.15 (d)	6.16 (b)	6.17 (c)	6.18 (d)
6.19 (c)	6.20 (b)	6.21 (a)	6.22 (c)	6.23 (c)	6.24 (e)
6.25 (c)	6.26 (c)	6.27 (a)	6.28 (c)	6.29 (e)	6.30 (b)
6.31 (a)					