Lecture 11 Data Manipulation and Analysis

15-12-2017

Ref:

1. Lecture Notes by Dr. Nitin Kumar Tripathi, AIT Thailand
2. http://libraries.mit.edu/gis/teach/iap05/vectorprocessing.ppt

Data Manipulation \& Analysis

- Manipulation:
- Deals with handling spatial data for a particular purpose.
- Analysis:
- Deals with the discovery of general principles underlying the total phenomenon
- KNOWLEDGE discovery is finding INFORMATION hidden in DATA
- e.g. if GDP and Literacy are related or not, etc.

Operations in Data Manipulations \& Analysis

1. Reclassification and Aggregation
2. Geometric Operations

- Rotation, Translation, Scaling,
- Geometric Rectification

3. Centroid Determination
4. Data Structure Conversion (R2V, V2R)
5. Spatial Operations

Connectivity and Neighborhood Operations
6. Measurements

- Distance and Directions
- Statistical Analysis, Descriptive Statistics
- Regression, Correlation and Cross Tabulation

7. Modeling

1 Reclassification and Aggregation

- Data may not be compatible with the user need and/or further analysis
- Data may be at different resolution
- Some time multiple attributes are there and we want to aggregate / simplify the attributes (Aggregation)
- In Raster, Aggregation is used for increasing Cell Size
- e.g. if there are 2 features, urban and rural areas, and we want to aggregate cells, then new feature will be selected based on Majority Rule.
- In Vector, it is used for Sliver Removing
- Slivers are small polygons (unwanted) generated after digitizing, or after R2V conversion.

Poly Aggregation

For Vector Data

Crop Type Map

Recoded Map of Cereal and Veg.

Redundant Boundaries Removed

Raster Aggregation

1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	2	1	1	1	1	1	1	1
1	1	1	2	2	1	1	1	1	1
1	1	1	2	2	2	2	2	2	2
1	1	1	1	2	1	2	2	2	2
1	1	1	1	2	2	2	2	2	2
1	1	1	1	2	2	2	2	2	2

$$
\begin{aligned}
& 1=\text { urban } \\
& 2=\text { sub-urban }
\end{aligned}
$$

1	1	1	1	1
1	2	1	1	1
1	1	2	2	2
1	1	2	2	2

After applying majority Filter on 2×2 windows

In Case of Tie?
Select 2 or 1 or declare a Mixed Area 3 (users choice)

Map Overlay and Dissolve

- Overlay and Dissolve involves Composition (Integrating) or Extracting (Disintegrating) of multiple maps in order to create new map.
- Polygon Overlay:
- combining two or more polygon maps
- intersection of polygons of two or more maps
- It will create new map having many smaller polygons and attributes from both the maps (input map \& overlay map)
- Mathematical Overlay:
- is performed for the purpose of area and measurement, as well as multiple attribute modeling
- it involves weighting of various parameters and summation of the weighted parameters to create maps such as Site Suitability maps, or capability assessment maps.

Polygon + Polygon Overlay

Landuse Map
District map

ID	LandUse	ID	District	
1	Agri	A	Lahore	
2	Forest		B	Qasur
3	Residents			
4	Commercial			

ID	Landuse	District
A1	Agri	Lahore
A2	Forest	Lahore
A3	Residents	Lahore
A4	Commercial	Lahore
B1	Agri	Qasur
B2	Forest	Qasur
B3	Residents	
B4	Qasur	
	Commercial	Qasur

Overlay: Line + Polygon

Overlay: Point + Polygon

Map Overlay and Dissolve

- Map Dissolve
- Involves inverse of polygon overlay
- To extract a single attribute from a multiple attribute polygons
- Similar to Aggregation
- Helps in extracting a new map having less attributes from a map having multiple attributes

Map Dissolve

$|$| ID | Landuse |
| :--- | :--- |
| 1 | Agri |
| 2 | Forest |
| 3 | Residents |
| 4 | Commercial |
| ID | District |
| A | Lahore |
| B | Qasur |

Aggregation in Arcview

- Dissolve
- This process will dissolve features in one theme based on the value of an attribute you choose. Technically this is the same as showing the attribute table for a theme, then choosing to Summarize an attribute where you elect to merge_shapes.

DISSOLVE

Aggregation in Arcview

Buffer Generation

- Generation of new polygon around points, lines, or polygon features, at user specified buffer distance
- Square or circular buffer can be calculated
- If Buffer Option is disabled in Arc view, then select the Distance Units in 'View: Properties'

Buffer

Buffers don't share the attributes of the feature that they surround. Use spatial Joins to add the attributes.

Original points (black) are surrounded by a buffer of 25 meters.

Create Buffers

What do you want to buffer?
c The graphics in your view
C The features of a theme
Indus.shp $\quad-$

Number of graphics: 13
Number of graphics selected: 0

Ti Create Buffers

Dissolve barriers between buffers?

C No

c Yes

32 Create Buffers

How do you want to create buffers?

Distance units are: 颠ilomelers
Where do you want the buffers to be saved?
C. as graphics in the view
C in an existing theme Pak-boundry.shp

Overlay in Arcview

- Clip

```
Choose a GeoProcessing operation,
    then click the Next button to choose then click
options.
\(C\) Dissolve features based on an attribute
C Merge themes together
(c) Clip one theme based on another
\(C\) Intersect two themes
\(C\) Union two themes
\(C\) Assign data by location (Spatial Join)
```


About Clip

This operation uses a clip theme like a cookie cutter on your input theme. The input theme's attributes are not altered.

More about Clip

- "Input" theme, "overlay" theme
- One of these themes must be a polygon theme (called the "overlay" theme)
- It will be used to define the clipping region.
- The clip process uses the clipping region as a cookie cutter.
- Only those features in the other theme (called the "I nput" theme) within the clipping region are stored in the new Shapefile.
- The features of the Input theme can be either of polygons, lines, or points.
- The features in the new Shapefile will be of the same type as the input theme's features. The feature attribute table for the new Shapefile contains the same items as the input theme's attribute table.

- Input Features		
	- 围	
- Clip Features		
	\pm -	
- Output Feature Class		
XY Tolerance (optional)		
	Decimal degrees	\checkmark

Clip

Extracts input features that overlay the clip features.
Use this tool to cut out a piece of one feature class using one or more of the features in another feature class as a cookie cutter This is particularly useful for creating a new feature class-also referred to as study area or area of interest (AOI)-that contains a geographic subset of the features in another, larger feature class.

$+$
CLIP FEATURE

Tool Help

Clip

Two polygons, A and B, Overlap. Clip A using B as a cookie cutter.

Clip operation creates a new polygon, C, which is the intersect, or overlap, of A and B. Attributes of A do not appear in C.

Overlay in Arcview

Merge

TheoProcessing

\times

Choose a GeoProcessing operation,
then click the Next button to choose options.
C Dissolve features based on an attribute
C Merge themes together
\bigcirc Clip one theme based on another
\checkmark Intersect two themes
\bigcirc Union two themes
C Assign data by location

- The new theme will contain the fields of one of the input themes.
- If each of the other input themes have at least the same fields, then all cells in the new theme's attribute table will be populated.
- If any of the other input themes have additional fields, that data will not be included.
- If any of the other input themes are missing the fields then no data will be added to those fields for the features of that other theme.

Overlay in Arcview

32 GeoProcessing
Choose a GeoProcessing operation, then click the Next button to choose options. C Dissolve features based on an attribute C Merge themes together C Clip one theme based on another C Intersect two themes: C Anssign data by location [Spatial Join) Help...About Intersect This operation cuts an input theme with the features from an overlay theme to produce an output theme with features that have attribute data from both themes.

- "Input" theme , "overlay" theme
- The overlay theme must be a polygon theme.
- Its features will split the input theme.
- Any features in the input theme that are not overlaid by features in the overlay theme will be ignored.
- Only the areas that are in common to the overlay and input themes will be included in the output theme.
- The input theme's features can be either polygons or lines.
- The output Shapefile's features will be of the same type as the input theme features.
- The attribute table for the output Shapefile includes the attributes from the input and overlay theme.

Overlay in Arcview

Intersect

Two polygons, A and B, Overlap. Find the Intersection of A using B.

Intersect operation creates a new polygon, C , which is the intersection, or overlap, of A and B. Attributes of A and B do appear in C .

Overlay in Arcview

Union

Choose a GeoProcessing operation,
then click the Next button to choose
options.
C Dissolve features based on an attribute
\checkmark Merge themes together
C Clip one theme based on another
C Intersect two themes
c Union two themes
\bigcirc Assign data by location (Spatial Join)

About Union

This operation combines features of an input theme with the polygons from an overlay theme to produce an output theme that contains the attributes and full extent of both themes.

More about Union
-"I nput" theme , "overlay" theme
-One of these themes must be a polygon theme (called the "overlay" theme)
-The output theme contains the combined polygons and attributes of both themes.
-The polygons of the input theme are split at their intersection with polygons of the overlay theme.
-The feature attribute table for the output theme contains attributes from the input and overlay themes' attribute tables.

Overlay in Arcview

Union
Two polygons, A and B, Overlap. Find the Union of A \& B.

Union will create a new polygon, C, which is the intersect, or overlap, of A and B.
A, B and C all will be part of the new Union theme and will retain their attributes.

Assign by Location

- The assign data by location operation will perform a spatial join between the two selected themes.
- A spatial join is similar to an attribute join; however it is based on the spatial relationship between the features in the two themes.
- For each feature represented in the destination table, ArcView looks to see if it has one of the following spatial relationships with any feature represented in the source table, and if it does, that feature's record from the source table is joined into the destination table:

Ti GeoProcessing \mathbf{x}

```
Choose a GeoProcessing operation,
then click the Next button to choose
options.
C Dissolve features based on an attribute
\(\bigcirc\) Merge themes together
\(\bigcirc\) Clip one theme based on another
\(\bigcirc\) Intersect two themes
\(C\) Union two themes
C-Assign data by location [Spatial Join)
```


Sliver polygons

Overlay operations often produce sliver polygons, which may or may not be meaningful.

The intersection of polygon A with a layer containing polygons C and D produce a layer with polygons D and E . E is a sliver polygon and may be considered noise.

Precision vs accuracy in overlay operations

- Sliver polygons - meaningful?
- Decide by size, dimensions, number of arcs, but there is no hard and fast rule.

Map Abstraction

- Calculation of Centroid
- Automatic Contouring
- Proximal Mapping
- Reclassification
- Conversion to Grid

Centroid Determination

- Average location of a line or polygon
- Centre of Mass of a two-or-three dimensional objects
- Measured by averaging the location of infinitely small area elements within polygon or
- By averaging the coordinates of raster cells

Connectivity operation

- Network Analysis
- Optimum corridor or travel Path Selection
- Finding shortest path by time, or by distance
- Hydrology: Discharge estimation
- Identify the boundaries of separate water sheds, from the run-off direction

Statistical Analysis

- Descriptive Statistics
- Mean, Medean, Mod, St Deviation, Range
- Histogram Statistics
- Extreme Values
- Correlation or Cross Tabluation

Raster Data Overlay

- Applies on cell to cell basis
- Arithmetic Operation on Raster Data
- $R=P+Q$
- $R=(P * P-Q * Q) / 2$
P and Q are input Raster Images
R is the resultant image
- Logical:
- If $P>30, R=1$; else $R=0$

