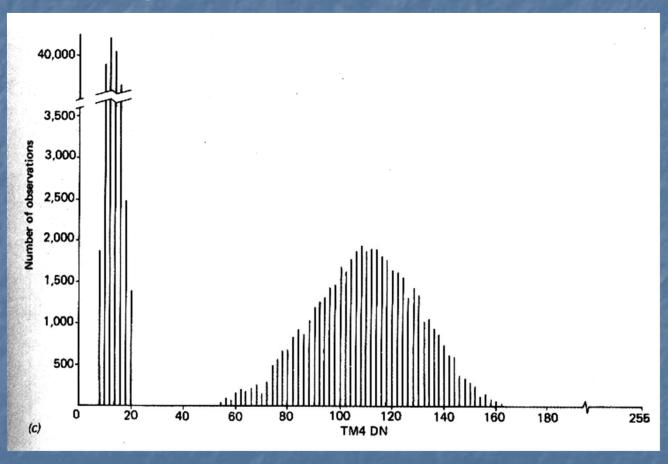

Image Processing

- Preprocessing (Image Rectification & Restoration)
 - Geometric Correction
 - Radiometric Corrections
- Image Enhancement
 - Contrast Stretching
 - Linear Stretch
 - Histogram Equalization
 - Gaussian Stretch
 - Spatial Filtering
- Image Transformation
 - Classification
 - Vectorization

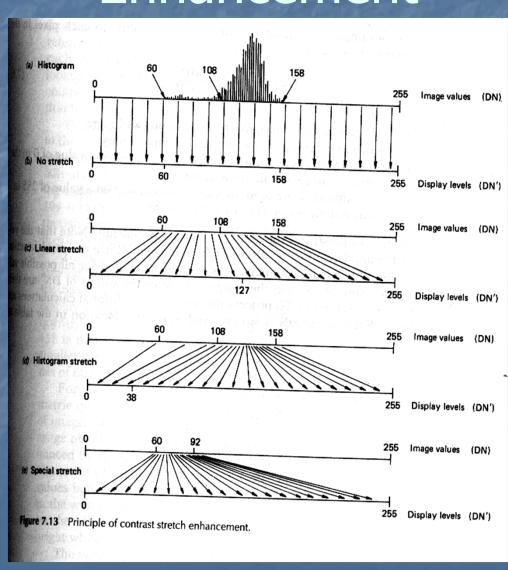
Geometric Correction

- Systematic Errors
 - Skewness of image due to Earth Rotation (Removed by Moving each Scan Line in Opposite Direction)
- Random Errors
 (Removed by Selecting Ground Control Points)

Geometric Correction


Radiometric Correction

- Atmospheric Correction
- Radiometric Calibration


Image Enhancement

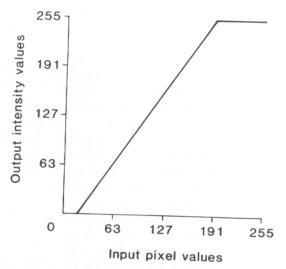
- Contrast Stretching
- Spatial Filtering

Histogram DN ∼ No of Pixels

Principle of Contrast Stretch Enhancement

$$DN' = \left(\frac{DN - MIN}{MAX - MIN}\right) 255 \tag{7.6}$$

where


DN' = digital number assigned to pixel in output image

DN = original digital number of pixel in input image

MIN = minimum value of input image, to be assigned a value of 0 in the output image (60 in our example)

MAX = maximum value of input image, to be assigned a value of 255 in the output image (158 in our example).

Linear Stretch Diagram

0 0	1 0	2 0	3 0	4
5 0	6 0	7 0	8 0	4 (
10 0	11 0	12 0	13 0	9 (
15 0	16 0	17 1	18 2	14 (
20 5	21 7	22 8	23 10	19 4
25 13	26 14	27 16	28 17	24 11
30 20	31 21	32 23	33 24	29 18
35 27	36 29	37 30	38 32	34 26 39 33
161211	162212	163214	164215	
166218	167220	168221	169222	165217
171225	172227	173228	174230	179224
176233	177234	178236	179237	175231
181240	182241	183243	184244	180231
186247	187249	188250	189252	185246
191255	192255	193255	194255	190253
196255	197255	198255	199255	195255 200255
216255	217255	218255	219255	
221255	222255	223255	224255	220255
26255	227255	228255	229255	225255
.31255	232255	233255	234255	230255
36255	237255	238255	239255	235255
41255	242255	243255	244255	240255
46255	247255	238255	249255	245255
.51255	252255	253255	254255	250255 255255

Histogram Equalization

Table 5.2(a) Illustrating calculations involved in histogram equalization procedure. N=262144, $n_1=16384$

Old LUT value	Number in class	Cumulative number	New LUT
0	1311	1311	0
an or p	2622	3933	0
2	5243	9170	0
3	9176	18352	ı i
4	13108	31460	Ĩ
5	24904	56364	3
6	30146	86510	5
7	45875	132385	8
8	58982	191367	11
9	48496	239863	14
10	11796	251659	15
11	3932	255591	15
12	3932	259523	15
13	2621	262144	15
14	0	262144	15
15	0	262144	15

Table 5.2(b) Number of pixels allocated to each class after the application of the equalization procedure shown in Figure 5.2(a). Note that smaller classes in the input have been amalgamated, reducing the contrast in those areas, while larger classes are more widely spaced, giving greater contrast. The numbers in each nonempty class vary considerably due to the fact that discrete classes cannot logically be split into subclasses.

(0) 9176	(1) 22284	(2)	(3) 24904	(4)	(5)	(6)
(7) 0	(8) 45875	(9) 0	(10) 0	0 (11) 58982	30146 (12) 0	(13) 0
(14) 48496	(15) 22281					

Gaussian Stretch

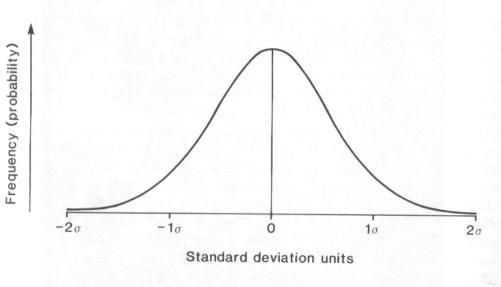


Figure 5.10 Standard normal distribution.

The probability density of the normal distribution is:

$$f(x\mid \mu,\sigma^2) = rac{1}{\sqrt{2\pi\sigma^2}}\;e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

Where:

- μ is the mean or expectation of the distribution (and also its median and mode).
- $oldsymbol{\sigma}$ is the standard deviation
- ullet σ^2 is the variance

$$y = Ce^{-ax^2}$$

$$C = (a / \pi)^{0.5}$$

A random variable with a Gaussian distribution is

Example Procedure for Gaussian Stretch

Table 5.3(a) Fitting observed histogram of pixel values to a Gaussian histogram	Table 5.3(a)	Fitting observed	histogram of	pixel values to a	Gaussian histogram
---	--------------	------------------	--------------	-------------------	--------------------

(i)	(ii)	(iii)	(iv)	(v)	(vi)	(vii)	(viii)
0	< -3.0	0.0020	530	530	1311	1311	1
1	-2.6	0.0033	868	1398	2622	3933	3
2	-2.2	0.0092	2423	3821	5243	9176	3
3	-1.8	0.0220	5774	9595	9176	18352	4
4	-1.4	0.0448	1175	21346	13108	31460	5
5	-1.0	0.0779	20421	41767	24904	56364	6
6	-0.6	0.1156	30303	72070	30146	86510	7
7	-0.2	0.1465	38401	110471	45875	132385	8
8	0.2	0.1585	41555	152026	58982	191367	10
9	0.6	0.1465	38401	190427	48496	239863	11
10	1.0	0.1156	30303	220730	11796	251659	12
11	1.4	0.0779	20421	241151	3932	255591	13
12	1.8	0.0448	11751	252902	3932	259523	14
13	2.2	0.0220	5774	258676	2621	262144	15
14	2.6	0.0092	2423	261099	0	262144	15
15	>3.0	0.0040	1045	262144	0	262144	15

⁽i) Original pixel value.

Table 5.3(b) Number of pixels at each level following transformation to Gaussian model

(0)	(1) 1311	(2)	(3) 7865	(4) 9176	(5) 13108	(6) 24904	(7) 30146
(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
45875	0	58782	48496	11796	3932	3932	2621

⁽ii) Standard deviations above (+) or below (-) the mean of the standard normal distribution.

⁽iii) Probability for each class from standard normal distribution. 111 x262144

⁽iv) Target number of pixels at each level (N = 262144).

⁽v) Cumulative target number of pixels.

⁽vi) Observed number of pixels at each level.

⁽vii) Cumulative observed number of pixels.

⁽viii) Pixel value after transformation.

- New DN is given based on comparison of values in col. vii and v
- The new DN is of the First Value in Col v that exceed the value in col. vii