

Introduction of Spectroradiometer and Determination of Spectral Reflectance of different ground features

BY

Dr. Noor Muhammad Khan Professor Civil Engineering 2018

Contents

Part 1:

 Introduction of EM Waves, Spectroscopy Part 2:

 Use of Spectroradiometer for measurement of Reflectance Spectrum

Basics

Have you ever used RS??

• Types of RS

• PLATFORMS of RS

3

RS & GIS

Significance of RS

- Environment
- Hydrology
- Developers and Planners
- Oil / Gas Industry
- Forestry
- Agriculture
- Geology
- Military

Cost Effective

Time Effective

20-Apr-20

RS & GIS

Technological Assisted Remote Sensing

- Force Field
 - (Gravitational and Magnetic)
 - NASA's Gravity Recovery and Climate Experiment (GRACE)
- Acoustical Energy
 - For Sonar Survey
- Electromagnetic Energy
 - Pass through free space
 - Pass through atmosphere
 - Variety in Behaviour
 - Can be exploited in different ways

Spectroscopy

 Branch of science which deals will interaction of matter with light or <u>electromagnetic energy</u>

Or

 It is branch of science in which electromagnetic radiation of particular wave length or range of wave length is used for qualitative and quantitative analysis of matter

RS & GIS

20-Apr-20

Ref: https://www.slideshare.net/niralimodha3/fundamentals-of-spectroscopy

Electromagnetic radiation

Waves produced by motion of electrically charged particles (photons)

- Wave Length
- Frequency
- Speed

Frequency Wavelength Transmission direction Amplitude Plane of polarization

Low Frequency, Low Energy

High Frequency, High Energy

20-Apr-20

RS & GIS

EM Waves and their nomenclature

9

RS & GIS

Speed of EM Wave

10

$$c = f \lambda$$

c = Speed of Light = 3x10⁸ m/Sec

Energy of a Particle

E = h f

h = Planck's Constant = 6.626x10⁻³⁴ Joule Sec

 $E = h c / \lambda$

RS & GIS

Principles of SPECTROSCOPY

- PRINCIPLE: based on measurement of spectrum
- SPECTRUM: Graph or plot of intensity of absorbed/emitted/reflected/transmitted radiation by a sample vs. wave length or frequency of EM wave
- SPECTROMETER: The instrument to measure the spectrum of a sample

RS & GIS

20-Apr-20

11

Ref: https://www.slideshare.net/niralimodha3/fundamentals-of-spectroscopy

EM Radiation & its Characteristics

- Energy
- Radiant Energy (E)
- Flux of Energy (Φ) (similar to Power)
- Radiant Flux Density W (Φ/area)
 - Irradiance (incoming)
 - Radiant Exitance (outgoing)
- Radiance (L) (Φ area⁻¹ st⁻¹)
- Spectral Radiance W_{λ} (L / λ)

Ref:http://www.matematikaria.com/geo metri/steradian.html

20-Apr-20

RS & GIS

Concepts of Radiations

13

• Black Body ?

(perfect absorber, perfect radiator)

An object that absorbs all the radiations incident upon it, and emits maximum amount of radiation at all temperatures.

- Gray Bodies (Constant Emissivity)
- Selected Radiator (Variable Emissivity)
- White Body (perfect Reflector)

RS & GIS

Black Bodies Emission

Interaction with Atmosphere

Scattering

- Selective
 - <u>Rayleigh Scattering</u>

Because of particles dia <0.1 micrometer (e.g. Gas molecules)

It is inversely proportional to Wave length⁴

Smaller wave lengths are more affected

<u>Mie Scattering</u>

Because of particles dia >0.1 to 10 micrometer (smoke, dust and salts)

16

inversely prop to Wave length^1~2

Not much diff. for wave lengths

• Nonselective

wavelength independent

because of larger molecules (ice, water droplets, etc) >10 micrometer

Absorption

(Water, O₂, O₃, C₂O, etc)

Atmospheric Windows

Atmospheric Interaction with EM Spectrum

Electromagnetic Spectrum

Energy Balance Equation

- Er, Et, Ea not necessarily same
- There variation from object to object help us distinguish different objects.

 $E_{I}(\lambda) = E_{R}(\lambda) + E_{A}(\lambda) + E_{T}(\lambda)$

 $E_{R}(\lambda) = E_{I}(\lambda) - \left[E_{A}(\lambda) + E_{T}(\lambda)\right]$

Reflectors

20

RS & GIS -2

%age Reflectance as Recorded by MSS of Landsat

Company and the second	Reflectance (%)	Reflectance (%)			
•	Band 1 (0.5–0.6μm)	Band 2 (0.6-0.7 μm)	Band 3 (0.7-0.8 µm)	Band 4 (0.8–1.1 μm	
Rock and soil materials and cover	2				
Sand	5.19	4.32	3.46	6 71	
Loam 1% H2O	6.70	6.79	6.10	14.01	
Loam 20% H ₂ O	4.21	4.02	3.38	7 57	
Ice	18.30	16.10	12.20	11.00	
Saow	19.10	15.00	10.90	9.20	
Cultivated land	3.27	2.39	1.58	(not given)	
Clay	14.34	14.40	11.99	(not given)	
Gneiss	7.02	6.54	5.37	10.70	
Loose soil	7.40	6.91	5.68	(not given)	
Vegetation	김 과학 등 전 이 있었다.	승규가 가지 있다.			
Wheat (low fertilizers)	3.44	2.27	3.56	8 95	
Wheat (high fertilizers)	3.69	2.58	3.67	9.29	
Water	3.75	2.24	1.20	1.89	
Barley (healthy)	3.96	4.07	4.47	9.79	
Barley (mildewed)	4.42	4.07	5.16	11.60	
Oats .	4.02	2.25	3.50	9 64	
Oats	3.21	2.20	3.27	9.46	
Soybean (high H2O)	3.29	2.78	4.11	8 67	
Soybean (low H2O)	3.35	2.60	3.97	11.01	

Panchromatic vs Reflected Infra Red

RS & GIS ·

What sattelite/bands are suitable

Landsat Thematic Mapper (TM)

Band No.	Wavelength Interval (µ m)	Spectral Response	Resolution (m)
1	0.45-0.52	Blue-Green	30
2	0.52-0.60	Green	30
3	0.63-0.69	Red	30
4	0.76-0.90	Near-IR	30
5	1.55-1.75	Mid-IR	30
6	10.40-12.50	Thermal-IR	120
7	2.08-2.35	Mid-IR	30

27

(TM) has been added to Landsats 4 (1982), 5 (1984), _{RS & GIS}6 (failed to attain orbit during launch and thus has prever returned data) and 7 (1999).

Spectral Response Pattern / Signature IR Emission

Spectral Response of few Rocks

29

RS & GIS -2

Typical Albedo/Reflectance Values Type of Surface

Type of surface	Surface	Albedo % of incident shortwave
-		radiation
Soils	Fine sand	37
	Dry black soil	14
Carl and the Child	Moist ploughed field	14
	Moist black soil	8
Water	Dense, clean and dry snow	86-95
surfaces	Woody farm, snow-covered	33-40
	Sea ice	36
	Ice sheet with water covering	26
Vegetation	Desert shrubland	20-29
	Winter wheat	16-23
	Oaks	18
	Deciduous forest	17
	Pine forest	14
	Prairie	12-13
	Swamp	10-14
	Heather	10
Geographic	Yuma, Arizona	20
locations	Winnipeg (July)	13-16
	Washington, DC (September)	12-13
States and	Great Salt Lake, Utah	3

30

RS & GIS -2

Reference Data

- To Aid in analysis and Interpretation of RS Data
- To Calibrate Sensor
- To Verify Information extracted form RS

Reference Data / Ground Truth

32

RS & GIS -2

Mobile Spectrometer Unit

RS & GIS -2

34

RS & GIS -2

36

RS & GIS -2

Thanks